Bootstrap

markdown公式大全

typora markdown常用数学编辑公式

一、基本公式

1. 上下标

$$
A_1^2
\\
B_{12}
\\
2^{x^2+y}
$$

A 1 2 B 12 2 x 2 + y A_1^2 \\ B_{12} \\ 2^{x^2+y} A12B122x2+y

2. 分数

x 1 + x 2 1 2 + x y a b a b \frac{x}{1+x^2} \\ \frac{\frac{1}{2}+x}{y} \\ \tfrac{a}{b} \frac{a}{b} 1+x2xy21+xbaba

$$
\frac{x}{1+x^2}
\\
\frac{\frac{1}{2}+x}{y}
\\
\tfrac{a}{b}
\frac{a}{b}
$$

3. 开根号

x x 3 \sqrt{x} \sqrt[3]{x} x 3x

$$
\sqrt{x}
\sqrt[3]{x}
$$

4. 组合数

( n k ) ( n k ) \binom{n}{k} \tbinom{n}{k} (kn)(kn)

$$
\binom{n}{k}
\tbinom{n}{k}
$$

5. 导数

a ′ a ′ ′ a ′ a' a'' a^{\prime} aa′′a

$$
a'
a''
a^{\prime}
$$

6. 取模

x ( m o d a ) 2 m o d    x x \pmod a \\ 2\mod{x} x(moda)2modx

$$
x \pmod a
\\
2\mod{x}
$$

7. 积分

∫ 1 2 ∫ 2 1 ∮ ∫ ∬ ∯ ∭ ∰ \int_{1}^{2} \intop_{2}^{1} \oint \smallint \\ \iint \oiint \iiint \oiiint 1221

$$
\int_{1}^{2}
\intop_{2}^{1}
\oint
\smallint
\\
\iint
\oiint
\iiint
\oiiint
$$

8.微分

∇ ∂ x d x x ˙ y ¨ Δ \nabla \\ \partial x \\ \mathrm{d}x \\ \dot x \\ \ddot y \\ \Delta xdxx˙y¨Δ

$$
\nabla		
\partial x			
\mathrm{d}x	
\dot x		
\ddot y     
\Delta
$$

9.累积/累乘/极限

∑ i = 1 k ∑ i = 1 n ∑ i = 1 n ∏ i = 1 k ∏ i = 1 n ∏ i = 1 n lim ⁡ k → ∞ lim ⁡ k → ∞ lim ⁡ k → ∞ \sum_{i=1}^{k} \displaystyle\sum_{i=1}^n \textstyle\sum_{i=1}^n \\ \prod_{i=1}^{k} \displaystyle\prod_{i=1}^n \textstyle\prod_{i=1}^n \\ \lim_{k \to \infty} \lim\limits_{k \to \infty} \lim\nolimits_{k \to \infty} i=1ki=1ni=1ni=1ki=1ni=1nlimkklimlimk

$$
\sum_{i=1}^{k}
\displaystyle\sum_{i=1}^n
\textstyle\sum_{i=1}^n
\\
\prod_{i=1}^{k}
\displaystyle\prod_{i=1}^n
\textstyle\prod_{i=1}^n
\\
\lim_{k \to \infty}
\lim\limits_{k \to \infty}
\lim\nolimits_{k \to \infty}]
$$

二、修饰符号

1. 简单的帽子

θ ^ A B ^ y ˉ A B ‾ a ~ a c ~ a ˉ a ˊ a ˇ a ˋ a ˙ a ¨ \hat{\theta} \widehat{AB} \\ \bar{y} \overline{AB} \\ \tilde{a} \widetilde{ac} \\ \bar{a} \acute{a} \check{a} \grave{a} \\ \dot{a} \ddot{a} θ^AB yˉABa~ac aˉaˊaˇaˋa˙a¨

$$
\hat{\theta}
\widehat{AB}
\\
\bar{y}
\overline{AB}
\\
\tilde{a}
\widetilde{ac}
\\
\bar{a}
\acute{a}
\check{a}
\grave{a}
\\
\dot{a}
\ddot{a}
$$

2. 帽子和袜子

A B ← A B → A B ↔ A B ← A B → A B ↔ A B ⏞ A B ⏟ A B ‾ A B ‾ \overleftarrow{AB} \overrightarrow{AB} \overleftrightarrow{AB} \\ \underleftarrow{AB} \underrightarrow{AB} \underleftrightarrow{AB} \\ \overbrace{AB} \underbrace{AB} \\ \overline{AB} \underline{AB} AB AB AB AB AB ABAB ABABAB

$$
\overleftarrow{AB}
\overrightarrow{AB}
\overleftrightarrow{AB}
\\
\underleftarrow{AB}
\underrightarrow{AB}
\underleftrightarrow{AB}
\\
\overbrace{AB}
\underbrace{AB}
\\
\overline{AB}
\underline{AB}
$$

3. 盒子和帽子

a + b + c ⏞ note a + b + c ⏟ note π = 3.14 \overbrace{a+b+c}^{\text{note}} \\ \underbrace{a+b+c}_{\text{note}} \\ \boxed{\pi=3.14} a+b+c notenote a+b+cπ=3.14

$$
\overbrace{a+b+c}^{\text{note}}
\\
\underbrace{a+b+c}_{\text{note}}
\\
\boxed{\pi=3.14}
$$

4. 各种括号

( ( ( ( ( ( \big( \Big( \bigg( \Bigg( (((((

$$
(
\big(
\Big(
\bigg(
\Bigg(
$$

[ ] < > ∣ − 2 ∣ { } [] <> |-2| \{\} []<>2∣{}

$$
[]
<>
|-2|
\{\}
$$

⟮ x ⟯ ∥ a ∥ ⌈ 2.6 ⌉ ⌊ 1.2 ⌋ \lgroup x \rgroup \lVert a \rVert \lceil 2.6 \rceil \lfloor 1.2 \rfloor xa2.61.2

$$
\lgroup x \rgroup
\lVert a \rVert
\lceil 2.6 \rceil
\lfloor 1.2 \rfloor

⌜ ⌝ ⌞ ⌟ \ulcorner \urcorner \llcorner \lrcorner

\ulcorner
\urcorner
\llcorner
\lrcorner

三、希腊字母

image

image

$$

No.LowercaseUppercaseEnglishIPA
1 1 1 α \alpha α A A A a l p h a alpha alpha/'ælfə/
2 2 2 β \beta β B B B b e t a beta beta/'bi:tə/or/'beɪtə/
3 3 3 γ \gamma γ Γ \Gamma Γ g a m m a gamma gamma/'gæmə/
4 4 4 δ \delta δ Δ \Delta Δ d e l t a delta delta/'deltə/
5 5 5 ϵ \epsilon ϵ E E E e p s i l o n epsilon epsilon/'epsɪlɒn/
6 6 6 ζ \zeta ζ Z Z Z z e t a zeta zeta/'zi:tə/
7 7 7 η \eta η H H H e t a eta eta/'i:tə/
8 8 8 θ \theta θ Θ \Theta Θ t h e t a theta theta/'θi:tə/
9 9 9 ι \iota ι I I I i o t a iota iota/aɪ’əʊtə/
10 10 10 κ \kappa κ K K K k a p p a kappa kappa/'kæpə/
11 11 11 λ \lambda λ λ \lambda λ l a m b d a lambda lambda/'læmdə/
12 12 12 μ \mu μ M M M m u mu mu/mju:/
13 13 13 ν \nu ν N N N n u nu nu/nju:/
14 14 14 ξ \xi ξ Ξ \Xi Ξ x i xi xi/ksi/or/'zaɪ/or/'ksaɪ/
15 15 15 ο \omicron ο O O O o m i c r o n omicron omicron/əu’maikrən/or/'ɑmɪ,krɑn/
16 16 16 π \pi π Π \Pi Π p i pi pi/paɪ/
17 17 17 ρ \rho ρ P P P r h o rho rho/rəʊ/
18 18 18 σ \sigma σ Σ \Sigma Σ s i g m a sigma sigma/'sɪɡmə/
19 19 19 τ \tau τ T T T t a u tau tau/tɔ:/or/taʊ/
20 20 20 υ \upsilon υ Υ \Upsilon Υ u p s i l o n upsilon upsilon/'ipsilon/or/'ʌpsilɒn/
21 21 21 ϕ \phi ϕ Φ \Phi Φ p h i phi phi/faɪ/
22 22 22 χ \chi χ X X X c h i chi chi/kaɪ/
23 23 23 ψ \psi ψ Ψ \Psi Ψ p s i psi psi/psaɪ/
24 24 24 ω \omega ω Ω \Omega Ω o m e g a omega omega/'əʊmɪɡə/or/oʊ’meɡə/
$$

四、算术运算符号

+ × / ÷ ⋅ # % + \times / \div \cdot \# \% +×/÷#%

+
-
\times
/
\div
\cdot
\#
\%

∘ ∗ ⋆ ⊗ ⊕ ⊙ \circ \ast \star \otimes \oplus \odot

\circ
\ast
\star
\otimes
\oplus
\odot

± ∓ ∔ ⋇ \pm \mp \dotplus \divideontimes ±∔⋇

\pm
\mp
\dotplus
\divideontimes

五、比较运算符

= ≢ ≈ ≊ ≅ ∼ ≠ ≠ = \not \equiv \approx \approxeq \cong \sim \neq \not= =≡≈≅∼==

=
= \not
\equiv
\approx
\approxeq
\cong
\sim
\neq
\not=

< < <
> > >
≤ \le
≥ \ge
≫ \gg
≪ \ll

<
>
\le
\ge
\gg
\ll

⋞ ⋟ ≺ ≻ ⪯ ⪰ \curlyeqprec \curlyeqsucc \prec \succ \preceq \succeq ⋞⋟≺≻⪯⪰

\curlyeqprec
\curlyeqsucc
\prec
\succ
\preceq
\succeq

六、集合运算符

∈ ∋ ⊄ ⊅ ⊆ ⊇ ∩ ∪ ∧ ∨ ¬ ∅ ∅ ∵ ∀ ∃ ∴ \in \owns \not \subset \not \supset \subseteq \supseteq \\ \cap \cup \land \lor \\ \neg \emptyset \varnothing \\ \because \forall \exists \therefore ∈∋⊃⊆⊇¬∅∀∃

\in
\owns \not
\subset \not
\supset
\subseteq
\supseteq
\\
\cap
\cup
\land
\lor
\\
\neg
\emptyset
\varnothing
\\
\because
\forall
\exists
\therefore

∩ ∪ ∧ ∨ ⊔ ⊓ \cap \cup \land \lor \sqcup \sqcap

\cap
\cup
\land
\lor
\sqcup
\sqcap

七、各种箭头

← ← → → ↔ ↑ ↓ ↕ \gets \leftarrow \to \rightarrow \leftrightarrow \\ \uparrow \downarrow \updownarrow ←←→→↔↑↓↕

\gets
\leftarrow
\to
\rightarrow
\leftrightarrow
\\
\uparrow
\downarrow
\updownarrow

⇐ ⇒ ⇔    ⟺    ⇑ ⇓ ⇕ \Leftarrow \Rightarrow \Leftrightarrow \iff \\ \Uparrow \Downarrow \Updownarrow ⇐⇒⇔⇑⇓⇕

\Leftarrow
\Rightarrow
\Leftrightarrow
\iff
\\
\Uparrow
\Downarrow
\Updownarrow

↗ ↘ ↙ ↖ \nearrow \searrow \swarrow \nwarrow ↗↘↙↖

\nearrow
\searrow
\swarrow
\nwarrow

⟵ ⟶ ⟷ ⟸ ⟹ ⟺ ⟼ \longleftarrow \longrightarrow \longleftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \longmapsto ⟵⟶⟷⟸⟹⟺⟼

\longleftarrow
\longrightarrow
\longleftrightarrow
\Longleftarrow
\Longrightarrow
\Longleftrightarrow
\longmapsto

→ o v e r → o v e r → u n d e r o v e r ← o v e r ← u n d e r ← u n d e r o v e r \xrightarrow{over} \xrightarrow[over]{} \xrightarrow[under]{over} \xleftarrow[]{over} \xleftarrow[under]{} \xleftarrow[under]{over} over overover underover underover under

\xrightarrow{over}
\xrightarrow[over]{}
\xrightarrow[under]{over}
\xleftarrow[]{over}
\xleftarrow[under]{}
\xleftarrow[under]{over}

七、空间间距

A  ⁣ B A B A   B A   B A   B A B A B A B A\!B \\ AB \\ A\thinspace B \\ A\:B \\ A\ B \\ A \enspace B \\ A\quad B \\ A\qquad B ABABABABA BABABAB

A\!B
\\
AB
\\
A\thinspace B
\\
A\:B
\\
A\ B
\\
A \enspace B
\\
A\quad B
\\
A\qquad B

八、矩阵

A = a b c d A = \begin{matrix} a & b\\ c & d \end{matrix} A=acbd

A = \begin{matrix}
a & b\\
c & d
\end{matrix}

B = ( a b c d ) B = \begin{pmatrix} a & b\\ c & d \end{pmatrix} B=(acbd)

B = \begin{pmatrix}
a & b\\
c & d
\end{pmatrix}

C = ∣ a b c d ∣ C = \begin{vmatrix} a & b\\ c & d \end{vmatrix} C= acbd

C = \begin{vmatrix}
a & b\\
c & d
\end{vmatrix}

D = [ a b c d ] D = \begin{bmatrix} a & b\\ c & d \end{bmatrix} D=[acbd]

D = \begin{bmatrix}
a & b\\
c & d
\end{bmatrix}

E = ∥ a b c d ∥ E = \begin{Vmatrix} a & b\\ c & d \end{Vmatrix} E= acbd

E = \begin{Vmatrix}
a & b\\
c & d
\end{Vmatrix}

F = { a b c d } F = \begin{Bmatrix} a & b\\ c & d \end{Bmatrix} F={acbd}

F = \begin{Bmatrix}
a & b\\
c & d
\end{Bmatrix}

[ A   b ] = [ a 11 a 12 a 13 b 1 a 21 a 22 a 23 b 2 a 31 a 32 a 33 b 3 ] [A\ b] = \begin{bmatrix} \begin{array}{c c c|c} a_{11} & a_{12} & a_{13} & b_1\\ a_{21} & a_{22} & a_{23} & b_2\\ a_{31} & a_{32} & a_{33} & b_3\\ \end{array} \end{bmatrix} [A b]= a11a21a31a12a22a32a13a23a33b1b2b3

[A\ b] = 
\begin{bmatrix}
\begin{array}{c c c|c}
a_{11} & a_{12} & a_{13} & b_1\\
a_{21} & a_{22} & a_{23} & b_2\\
a_{31} & a_{32} & a_{33} & b_3\\
\end{array}
\end{bmatrix}

a b c d e f g h i \begin{array}{c:c:c} a & b & c \\ \hline d & e & f \\ \hdashline g & h & i \end{array} adgbehcfi

\begin{array}{c:c:c}
a & b & c \\ 
\hline
d & e & f \\
\hdashline
 g & h & i
\end{array}

L n × n = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] L_{n\times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots &\ddots & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{bmatrix} Ln×n= a11a21an1a12a22an2a1na2nann

L_{n\times n} = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\ 
a_{21} & a_{22} & \cdots & a_{2n} \\ 
\vdots & \vdots &\ddots & \vdots\\
a_{n1} & a_{n2} & \cdots & a_{nn} \\ 
\end{bmatrix}

八、列式/方程组

f ( x ) = ( x + 1 ) 2 = x 2 + 2 x + 1 \begin{aligned} f(x) &= (x+1)^2\\ &= x^2 + 2x + 1 \end{aligned} f(x)=(x+1)2=x2+2x+1

\begin{aligned}
f(x) &= (x+1)^2\\
&= x^2 + 2x + 1
\end{aligned}

f ( x ) = { a if b b if a f(x) = \begin{cases} a &\text{if b}\\ b &\text{if a}\\ \end{cases} f(x)={abif bif a

f(x) = \begin{cases}
a &\text{if b}\\
b &\text{if a}\\
\end{cases}

{ x + 2 y = 1 3 x − y = 5 \begin{cases} \begin{aligned} x + 2y &= 1\\ 3x - y &= 5 \end{aligned} \end{cases} {x+2y3xy=1=5

\begin{cases}
\begin{aligned}
x + 2y &= 1\\
3x - y &= 5
\end{aligned}
\end{cases}

g ( x , y ) = { d b ≤ f ( x , y ) ≤ M f F L ∗ S L ≤ 0 < S M F R ∗ S M ≤ 0 < S R F R S R ≤ 0 g(x,y)=\left\{ \begin{array}{rcl} d & & {b \leq f(x,y) \leq M_f}\\ F^*_L & & {S_L \leq 0 < S_M}\\ F^*_R & & {S_M \leq 0 < S_R}\\ F_R & & {S_R \leq 0} \end{array} \right. g(x,y)= dFLFRFRbf(x,y)MfSL0<SMSM0<SRSR0

g(x,y)=\left\{
\begin{array}{rcl}
\frac{M_g - d}{M_f-b}[f(x,y)-b]+d       &      & {b      \leq  f(x,y)  \leq M_f}\\
F^*_L     &      & {S_L \leq 0 < S_M}\\
F^*_R     &      & {S_M \leq 0 < S_R}\\
F_R       &      & {S_R \leq 0}
\end{array} \right.

#九、修改颜色和字体大小

F = m a F = m a F = m a o n e   l i n e n o t h i n g \textcolor{blue}{F=ma} \\ \textcolor{#00ff00}{F=ma} \\ \textcolor{#ff0000}{F=ma} \\ \color{blue} one\ line \\ nothing F=maF=maF=maone linenothing

\textcolor{blue}{F=ma}
\\
\textcolor{#00ff00}{F=ma}
\\
\textcolor{#ff0000}{F=ma}
\\
\color{blue} one\ line
\\
nothing

F=ma A A \colorbox{#00ff00}{F=ma} \\ \colorbox{aqua}{A} \\ \fcolorbox{red}{aqua}{A} F=maAA

\colorbox{#00ff00}{F=ma}
\\
\colorbox{aqua}{A}
\\
\fcolorbox{red}{aqua}{A}

A B A B A B A B A B A B A B A B A B A B AB \Huge AB \huge AB \\ AB \LARGE AB \Large AB \large AB \\ AB \small AB \tiny AB ABABABABABABABABABAB

AB
\Huge AB
\huge AB
\\
AB
\LARGE AB
\Large AB
\large AB
\\
AB
\small AB
\tiny AB

十、划掉

5 5 A B C ≠ \cancel{5} \bcancel{5} \xcancel{ABC} \not = 5 5 ABC =

\cancel{5}
\bcancel{5}
\xcancel{ABC}
\not =

十一、常见图形

□ □ ■ △ ▽ ▲ ⋄ ◊ ⋆ ★ ∘ ∙ ◯ ⨀ \Box \square \blacksquare \triangle \triangledown \blacktriangle \diamond \Diamond \star \bigstar \circ \bullet \bigcirc \bigodot □□■▽▲

\Box
\square
\blacksquare
\triangle
\triangledown
\blacktriangle
\diamond
\Diamond
\star
\bigstar
\circ
\bullet
\bigcirc
\bigodot

♢ ♣ ♡ ♠ \diamondsuit \clubsuit \heartsuit \spadesuit ♢♣♡♠

\diamondsuit
\clubsuit
\heartsuit
\spadesuit

∠ ∡ ⊤ ⊥ ∞ \angle \measuredangle \top \bot \infty ⊤⊥∞

\angle
\measuredangle
\top
\bot
\infty

✓ † ‡ ¥ $ \checkmark \dagger \ddagger \yen \$ ¥$

\checkmark
\dagger
\ddagger
\yen
\$

十二、声明宏

对于一些复杂但是只有少许不同的表达式,可以声明一个函数来调用,提高源码的可读性,减少出错

\def\macroname#1#2{
your command
}

宏允许带任意数量的参数(也可以不带参),必须是#1,#2,……这样的命名格式,同时注意再定义宏的时候注意让#1\中间隔一个空格,否则会解析成#。再调用的时候格式为\macroname{x}{y}{z},可以参考一下的例子
f ( x ) = 1 2 π   σ 1 exp ⁡ [ − ( x − u 1 ) 2 2   σ 1 2 ] f ( y ) = 1 2 π   σ 2 exp ⁡ [ − ( y − u 2 ) 2 2   σ 2 2 ] \def\Normal#1#2#3{ \frac{1}{\sqrt{2\pi}\ #3}\exp{[-\frac{(#1 - #2)^2}{2\ #3^2}]} } f(x)=\Normal{x}{u_1}{\sigma_1}\\ f(y)=\Normal{y}{u_2}{\sigma_2}\\ f(x)=2π  σ11exp[2 σ12(xu1)2]f(y)=2π  σ21exp[2 σ22(yu2)2]

\def\Normal#1#2#3{
\frac{1}{\sqrt{2\pi}\ #3}\exp{[-\frac{(#1 - #2)^2}{2\ #3^2}]}
}
f(x)=\Normal{x}{u_1}{\sigma_1}\\
f(y)=\Normal{y}{u_2}{\sigma_2}\\

e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + ⋯ \def\EXP{ e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots } \EXP ex=1+x+2!1x2+3!1x3+

\def\EXP{
e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3  + \cdots
}
\EXP

参考一

;