Bootstrap

SLAM中的卡方分布

视觉slam中相邻帧特征点匹配时,动辄上千个特征点,匹配错误的是难免的,而误匹配势必会对位姿精度以及建图精度造成影响,那么如何分辨哪些是误匹配的点对儿呢?如果已知两帧的的单应矩阵,假设单应矩阵是没有误差的,那么两帧中匹配正确的特征点通过单应矩阵是重投影是不应该有误差的或者误差十分小,而误匹配的特征点的重投影误差一定十分显著。那么我们是不是可以设置一个误差门限,从而甄别出这些误匹配点?可是这个误差门限该设置为多少?

假设图像金字塔第n层中一个特征点\(\mathbf{p_c}=\begin{bmatrix}u \\ v\end{bmatrix}\)以及其对应的世界坐标系位置\(\mathbf{p_w}=\begin{bmatrix}x \\ y \\ z\end{bmatrix}\)和转换矩阵\(T_{cw}\),将空间点重投影到图像中为\(\mathbf{p_c'}=\begin{bmatrix}u' \\ v'\end{bmatrix}\)。那么x轴的重投影误差\(e_x=u-u'\),假设变换矩阵没有误差,实际中由于不同时刻拍摄以及成像原因,会给重投影误差带来噪声,不妨假设\(e_x\sim N(0,\sigma_x^2)\),同理假设\(e_y\sim N(0,\sigma_y^2)\),并假设噪声方差\(\sigma_x^

;