Bootstrap

常用的三角函数公式




  • sin ⁡ 2 x + cos ⁡ 2 x = 1 \sin ^2 x + \cos ^2 x = 1 sin2x+cos2x=1

  • tan ⁡ x = sin ⁡ x cos ⁡ x \tan x = \dfrac{\sin x}{\cos x} tanx=cosxsinx

  • cot ⁡ x = 1 tan ⁡ x = cos ⁡ x sin ⁡ x \cot x = \dfrac{1}{\tan x}=\dfrac{\cos x}{\sin x} cotx=tanx1=sinxcosx

  • sec ⁡ x = 1 cos ⁡ x \sec x= \dfrac{1}{\cos x} secx=cosx1

  • csc ⁡ x = 1 sin ⁡ x \csc x =\dfrac{1}{\sin x} cscx=sinx1

  • tan ⁡ 2 x = sec ⁡ 2 − 1 = 1 cos ⁡ 2 x − 1 = 1 − cos ⁡ 2 x cos ⁡ 2 x = sin ⁡ 2 x cos ⁡ 2 x \tan^2x=\sec^2-1=\dfrac{1}{\cos^2x}-1=\dfrac{1-\cos^2x}{\cos^2x}=\dfrac{\sin^2x}{\cos^2x} tan2x=sec21=cos2x11=cos2x1cos2x=cos2xsin2x

  • cot ⁡ 2 = csc ⁡ 2 x − 1 = 1 sin ⁡ 2 x − 1 = 1 − sin ⁡ 2 x sin ⁡ 2 x = cos ⁡ 2 x sin ⁡ 2 x \cot^2=\csc^2x-1=\dfrac{1}{\sin^2x}-1=\dfrac{1-\sin^2x}{\sin^2x}=\dfrac{\cos^2x}{\sin^2x} cot2=csc2x1=sin2x11=sin2x1sin2x=sin2xcos2x

  • cos ⁡ x = sin ⁡ ( x + π 2 ) \cos x=\sin(x+\dfrac{\pi}{2}) cosx=sin(x+2π) sin ⁡ x \sin x sinx 向左平移 π 2 \dfrac{\pi}{2} 2π. (左加右减)

  • sin ⁡ x = cos ⁡ ( x − π 2 ) \sin x=\cos(x-\dfrac{\pi}{2}) sinx=cos(x2π)

  • cos ⁡ x = cos ⁡ ( − x ) \cos x= \cos(-x) cosx=cos(x),偶函数

  • sin ⁡ x = − sin ⁡ ( − x ) \sin x = - \sin(-x) sinx=sin(x),奇函数

  • sin ⁡ x = − sin ⁡ ( x ± π ) \sin x= -\sin(x\pm\pi) sinx=sin(x±π) sin ⁡ x \sin x sinx无论是向左、还是向右平移 π \pi π 个单位后,乘以-1,关于x轴对称之后函数图像不变.

  • cos ⁡ x = − cos ⁡ ( x ± π ) \cos x = -\cos(x\pm\pi) cosx=cos(x±π)

  • arcsin ⁡ x + arccos ⁡ x = π 2 \arcsin x+\arccos x=\dfrac{\pi}{2} arcsinx+arccosx=2π.


倍(半)角公式

  • cos ⁡ ( A ± B ) = cos ⁡ A ⋅ cos ⁡ B ∓ sin ⁡ A ⋅ sin ⁡ B \cos(A\pm B)=\cos A\cdot\cos B \mp \sin A\cdot\sin B cos(A±B)=cosAcosBsinAsinB.

  • sin ⁡ ( A ± B ) = sin ⁡ A ⋅ cos ⁡ B ± cos ⁡ A ⋅ sin ⁡ B \sin(A\pm B)=\sin A\cdot\cos B \pm \cos A\cdot\sin B sin(A±B)=sinAcosB±cosAsinB.

  • cos ⁡ ( 2 A ) = cos ⁡ 2 A − sin ⁡ 2 A = 1 − 2 sin ⁡ 2 A = 2 cos ⁡ 2 A − 1 \cos(2A)=\cos^2A-\sin^2A=1-2\sin^2A=2\cos^2A-1 cos(2A)=cos2Asin2A=12sin2A=2cos2A1.

  • cos ⁡ A = cos ⁡ 2 A 2 − sin ⁡ 2 A 2 = 1 − 2 sin ⁡ 2 A 2 = 2 cos ⁡ 2 A 2 − 1 \cos A = \cos^2\dfrac{A}{2}-\sin^2\dfrac{A}{2}=1-2\sin^2\dfrac{A}{2}=2\cos^2\dfrac{A}{2}-1 cosA=cos22Asin22A=12sin22A=2cos22A1.

  • sin ⁡ ( 2 A ) = 2 sin ⁡ A ⋅ cos ⁡ A \sin(2A)=2\sin A\cdot\cos A sin(2A)=2sinAcosA.

  • sin ⁡ A = 2 sin ⁡ A 2 ⋅ cos ⁡ A 2 \sin A = 2\sin\dfrac{A}{2}\cdot\cos\dfrac{A}{2} sinA=2sin2Acos2A.


  • tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \tan2\alpha=\dfrac{2\tan\alpha}{1-\tan^2\alpha} tan2α=1tan2α2tanα.

  • tan ⁡ α = 2 tan ⁡ α 2 1 − tan ⁡ 2 α 2 \tan\alpha=\dfrac{2\tan\dfrac{\alpha}{2}}{1-\tan^2\dfrac{\alpha}{2}} tanα=1tan22α2tan2α.

  • tan ⁡ α 2 = 1 − cos ⁡ α sin ⁡ α = sin ⁡ α 1 + cos ⁡ α \tan\dfrac{\alpha}{2}=\dfrac{1-\cos\alpha}{\sin\alpha}=\dfrac{\sin\alpha}{1+\cos\alpha} tan2α=sinα1cosα=1+cosαsinα.

tan ⁡ 2 α = sin ⁡ 2 α cos ⁡ 2 α = 2 sin ⁡ α ⋅ cos ⁡ α 1 − 2 sin ⁡ 2 α = 2 tan ⁡ α 1 cos ⁡ 2 α − 2 tan ⁡ 2 α = 2 tan ⁡ α 1 − sin ⁡ 2 α cos ⁡ 2 α − tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α . \tan2\alpha=\dfrac{\sin2\alpha}{\cos2\alpha}=\dfrac{2\sin\alpha\cdot\cos\alpha}{1-2\sin^2\alpha}=\dfrac{2\tan\alpha}{\dfrac{1}{\cos^2\alpha}-2\tan^2\alpha}=\dfrac{2\tan\alpha}{\dfrac{1-\sin^2\alpha}{\cos^2\alpha}-\tan^2\alpha}=\dfrac{2\tan\alpha}{1-\tan^2\alpha}. tan2α=cos2αsin2α=12sin2α2sinαcosα=cos2α12tan2α2tanα=cos2α1sin2αtan2α2tanα=1tan2α2tanα.

tan ⁡ α = 2 tan ⁡ α 2 1 − tan ⁡ 2 α 2 \tan\alpha=\dfrac{2\tan\dfrac{\alpha}{2}}{1-\tan^2\dfrac{\alpha}{2}} tanα=1tan22α2tan2α
tan ⁡ α − tan ⁡ α tan ⁡ 2 α 2 = 2 tan ⁡ α 2 \tan\alpha-\tan\alpha\tan^2\dfrac{\alpha}{2}=2\tan\dfrac{\alpha}{2} tanαtanαtan22α=2tan2α
tan ⁡ α ⋅ tan ⁡ 2 α 2 + 2 tan ⁡ α 2 − tan ⁡ α = 0 \tan\alpha\cdot\tan^2\dfrac{\alpha}{2}+2\tan\dfrac{\alpha}{2}-\tan\alpha=0 tanαtan22α+2tan2αtanα=0
求根公式:
tan ⁡ α 2 = − 2 ± 4 + 4 tan ⁡ 2 α 2 tan ⁡ α = − 1 ± sec ⁡ α tan ⁡ α = − cos ⁡ α ± 1 sin ⁡ α \tan\dfrac{\alpha}{2}=\dfrac{-2\pm\sqrt{4+4\tan^2\alpha}}{2\tan\alpha}=\dfrac{-1\pm\sec\alpha}{\tan\alpha}=\dfrac{-\cos\alpha\pm1}{\sin\alpha} tan2α=2tanα2±4+4tan2α =tanα1±secα=sinαcosα±1
α ∈ ( 0 , π ) \alpha\in(0,\pi) α(0,π) 时, tan ⁡ α 2 > 0 \tan\dfrac{\alpha}{2}>0 tan2α>0,而 − cos ⁡ α + 1 sin ⁡ α < 0 -\dfrac{\cos\alpha+1}{\sin\alpha}<0 sinαcosα+1<0.

∴ tan ⁡ α 2 = − cos ⁡ α + 1 sin ⁡ α \therefore \tan\dfrac{\alpha}{2}=-\dfrac{\cos\alpha+1}{\sin\alpha} tan2α=sinαcosα+1 不成立.

∴ tan ⁡ α 2 = 1 − cos ⁡ α sin ⁡ α = ( 1 − cos ⁡ α ) ⋅ ( 1 + cos ⁡ α ) sin ⁡ α + sin ⁡ α ⋅ cos ⁡ α = 1 − cos ⁡ 2 α sin ⁡ α + sin ⁡ α ⋅ cos ⁡ α = sin ⁡ α 1 + cos ⁡ α \therefore \tan\dfrac{\alpha}{2}=\dfrac{1-\cos\alpha}{\sin\alpha}=\dfrac{(1-\cos\alpha)\cdot(1+\cos\alpha)}{\sin\alpha+\sin\alpha\cdot\cos\alpha}=\dfrac{1-\cos^2\alpha}{\sin\alpha+\sin\alpha\cdot\cos\alpha}=\dfrac{\sin\alpha}{1+\cos\alpha} tan2α=sinα1cosα=sinα+sinαcosα(1cosα)(1+cosα)=sinα+sinαcosα1cos2α=1+cosαsinα


正、余弦化切弦

  • sin ⁡ 2 x = 2 sin ⁡ x ⋅ cos ⁡ x = 2 tan ⁡ x sec ⁡ 2 x = 2 tan ⁡ x 1 + tan ⁡ 2 x \sin2x=2\sin x\cdot\cos x=\dfrac{2\tan x}{\sec^2x}=\dfrac{2\tan x}{1+\tan^2x} sin2x=2sinxcosx=sec2x2tanx=1+tan2x2tanx.

  • cos ⁡ 2 x = cos ⁡ 2 x − sin ⁡ 2 x = 1 − tan ⁡ 2 x sec ⁡ 2 x = 1 − tan ⁡ 2 x 1 + tan ⁡ 2 x \cos2x=\cos^2x-\sin^2x=\dfrac{1-\tan^2x}{\sec^2x}=\dfrac{1-\tan^2x}{1+\tan^2x} cos2x=cos2xsin2x=sec2x1tan2x=1+tan2x1tan2x.

  • sin ⁡ x = 2 tan ⁡ x 2 1 + tan ⁡ 2 x 2 \sin x=\dfrac{2\tan\dfrac{x}{2}}{1+\tan^2\dfrac{x}{2}} sinx=1+tan22x2tan2x.

  • cos ⁡ x = 1 − tan ⁡ 2 x 2 1 + tan ⁡ 2 x 2 \cos x=\dfrac{1-\tan^2\dfrac{x}{2}}{1+\tan^2\dfrac{x}{2}} cosx=1+tan22x1tan22x.


辅助角公式

  • sin ⁡ α ⋅ a a 2 + b 2 − cos ⁡ α ⋅ b a 2 + b 2 = sin ⁡ α ⋅ cos ⁡ β − cos ⁡ α ⋅ sin ⁡ β = sin ⁡ ( α − β ) \sin\alpha\cdot\dfrac{a}{\sqrt{a^2+b^2}}-\cos\alpha\cdot\dfrac{b}{\sqrt{a^2+b^2}}=\sin\alpha\cdot\cos\beta-\cos\alpha\cdot\sin\beta=\sin(\alpha-\beta) sinαa2+b2 acosαa2+b2 b=sinαcosβcosαsinβ=sin(αβ).

其中,令 cos ⁡ β = a a 2 + b 2 \cos\beta=\dfrac{a}{\sqrt{a^2+b^2}} cosβ=a2+b2 a sin ⁡ β = b a 2 + b 2 \sin\beta=\dfrac{b}{\sqrt{a^2+b^2}} sinβ=a2+b2 b

则有 cos ⁡ 2 β + sin ⁡ 2 β = ( a a 2 + b 2 ) 2 + ( b a 2 + b 2 ) 2 = 1 \cos^2\beta+\sin^2\beta=\Big(\dfrac{a}{\sqrt{a^2+b^2}}\Big)^2+\Big(\dfrac{b}{\sqrt{a^2+b^2}}\Big)^2=1 cos2β+sin2β=(a2+b2 a)2+(a2+b2 b)2=1.


E m L 2 ω 2 + R 2 ⋅ ( R ⋅ sin ⁡ ω t − L ω ⋅ cos ⁡ ω t ) \dfrac{E_m}{L^2\omega^2+R^2}\cdot\big(R\cdot\sin\omega t-L\omega\cdot\cos\omega t\big) L2ω2+R2Em(RsinωtLωcosωt)

= E m L 2 ω 2 + R 2 ⋅ ( sin ⁡ ω t ⋅ R L 2 ω 2 + R 2 − cos ⁡ ω t ⋅ L ω L 2 ω 2 + R 2 ) =\dfrac{E_m}{\sqrt{L^2\omega^2+R^2}}\cdot\big(\sin\omega t\cdot\dfrac{R}{\sqrt{L^2\omega^2+R^2}}-\cos\omega t\cdot\dfrac{L\omega}{\sqrt{L^2\omega^2+R^2}}\big) =L2ω2+R2 Em(sinωtL2ω2+R2 RcosωtL2ω2+R2 Lω)

= E m L 2 ω 2 + R 2 ⋅ sin ⁡ ( ω t − φ ) =\dfrac{E_m}{\sqrt{L^2\omega^2+R^2}}\cdot\sin(\omega t-\varphi) =L2ω2+R2 Emsin(ωtφ).

其中 cos ⁡ φ = R L 2 ω 2 + R 2 \cos\varphi=\dfrac{R}{\sqrt{L^2\omega^2+R^2}} cosφ=L2ω2+R2 R sin ⁡ φ = L ω L 2 ω 2 + R 2 \sin\varphi=\dfrac{L\omega}{\sqrt{L^2\omega^2+R^2}} sinφ=L2ω2+R2 Lω.


积化和差、和差化积

参考往期文章,点击跳转

;