Bootstrap

hive数据仓库项目练习

一、项目架构要求

1.数据仓库的数据来源为业务数据库(mysql)
2.通过sqoop将mysql中的业务数据导入到大数据平台(hive)
3.通过hive进行数据计算和数据分析形成数据报表
4.再通过sqoop将数据报表导出到mysql
5.使用FineReport制作数据报表

二、项目实现

2.1 初始化脚本

进行数据预置,完成“1.数据仓库的数据来源为业务数据库(mysql)”。

2.1.1 初始化MySQL脚本

在navicat中,远程连接虚拟主机上的MySQL,并且执行以下查询。

-- 设置sql_mode
set sql_mode = 'NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES';

-- 创建数据库mall
create database mall;

-- 切换数据库
use mall;

-- 创建用户信息表
CREATE TABLE t_user_info(
	user_id        varchar(100) not null,
	user_name      varchar(100) not null,
	sex            varchar(10)  not null,
	age            int not null,
	country_code   varchar(100) not null,
	province_code  varchar(100) not null,
	city_code      varchar(100) not null
)DEFAULT CHARSET='utf8';

-- 创建订单表
CREATE TABLE t_sale_order(
	sale_id        varchar(100) not null,
	user_id        varchar(100) not null,
	goods_id       varchar(100) not null,
	price          int not null,
	sale_count     int not null,
	total_price    int not null,
	create_time    varchar(100) not null
)DEFAULT CHARSET='utf8';

-- 创建商品信息表
CREATE TABLE dim_goods_info(
	goods_id   varchar(100) not null,
	goods_name varchar(100) not null
)DEFAULT CHARSET='utf8';

-- 创建国家信息表
CREATE TABLE dim_country_info(
	country_code   varchar(100) not null,
	country_name   varchar(100) not null
)DEFAULT CHARSET='utf8';

-- 创建省份信息表
CREATE TABLE dim_province_info(
	province_code   varchar(100) not null,
	province_name   varchar(100) not null,
	country_code    varchar(100) not null
)DEFAULT CHARSET='utf8';

-- 创建城市信息表
CREATE TABLE dim_city_info(
	city_code     varchar(100) not null,
	city_name     varchar(100) not null,
	province_code varchar(100) not null
)DEFAULT CHARSET='utf8';

-- 创建用户浏览日志表
CREATE TABLE t_access_log(
	log_str varchar(500) not null
)DEFAULT CHARSET='utf8';


-- 创建商品类别表
CREATE TABLE dim_goods_type(
	goods_id   varchar(100) not null,
	type_id    varchar(100) not null,
	type_name  varchar(100) not null
)DEFAULT CHARSET='utf8';


-- 用户信息表插入数据
insert into t_user_info values('c001','王小名','男',22,'86','32','320100');
insert into t_user_info values('c002','李虎','男',40,'86','32','320200');
insert into t_user_info values('c003','韩静','女',26,'86','32','320600');
insert into t_user_info values('c004','董冬','男',35,'86','32','321100');
insert into t_user_info values('c005','张茗','男',21,'86','32','321200');
insert into t_user_info values('c006','张一凡','男',56,'86','32','321300');
insert into t_user_info values('c007','王花','女',20,'86','32','320100');
insert into t_user_info values('c008','刘梦','女',31,'86','32','320600');
insert into t_user_info values('u001','peter','男',30,'1','12','2233');
insert into t_user_info values('u002','rose','女',22,'1','08','2345');
insert into t_user_info values('u003','jack','男',26,'1','02','3663');
insert into t_user_info values('u004','marel','男',31,'1','11','4567');
commit;

-- 订单表插入数据
insert into t_sale_order values('s001','c002','g005',1099,1,1099,'2022-11-08 09:23:54');
insert into t_sale_order values('s002','c002','g001',3000,2,6000,'2022-11-08 10:12:36');
insert into t_sale_order values('s003','c004','g006',2899,1,2899,'2022-11-08 09:23:54');
insert into t_sale_order values('s004','u001','g001',3000,1,3000,'2022-11-08 08:01:21');
insert into t_sale_order values('s005','u002','g002',100,3,300,'2022-11-08 13:40:00');
insert into t_sale_order values('s006','c006','g009',299,1,299,'2022-11-08 08:11:20');
insert into t_sale_order values('s007','u003','g005',1099,1,1099,'2022-11-08 15:01:33');
insert into t_sale_order values('s008','c006','g004',3000,1,3000,'2022-11-08 17:08:01');
insert into t_sale_order values('s009','c005','g008',10,8,80,'2022-11-08 12:08:23');
insert into t_sale_order values('s010','c006','g002',100,1,100,'2022-11-08 22:23:14');
insert into t_sale_order values('s011','c006','g007',99,10,999,'2022-11-08 23:07:42');
insert into t_sale_order values('s012','c007','g007',99,1,99,'2022-11-08 06:51:03');
commit;

-- 商品信息表插入数据
insert into dim_goods_info values('g001','OPPO K9x 5G全网通手机');
insert into dim_goods_info values('g002','儿童历史地理大百科全书 绘本礼盒典藏全40册');
insert into dim_goods_info values('g003','欧珀莱 AUPRES 时光锁小紫钻抗皱紧实眼霜');
insert into dim_goods_info values('g004','苏泊尔(SUPOR)净水器家用超滤软水机');
insert into dim_goods_info values('g005','小米粽 平板电脑');
insert into dim_goods_info values('g006','GoPro HERO11 Black运动相机');
insert into dim_goods_info values('g007','云南实建褚橙冰糖橙');
insert into dim_goods_info values('g008','四色蓝泡泡洁厕');
insert into dim_goods_info values('g009','奥康男鞋');
commit;

-- 国家信息表插入数据
insert into dim_country_info values('1','美国');
insert into dim_country_info values('65','新加坡');
insert into dim_country_info values('81','日本');
insert into dim_country_info values('61','澳大利亚');
insert into dim_country_info values('54','阿根廷');
insert into dim_country_info values('55','巴西');
insert into dim_country_info values('45','丹麦');
insert into dim_country_info values('86','中国');
commit;

-- 省份信息表插入数据
insert into dim_province_info values('11','北京市','86');
insert into dim_province_info values('12','天津市','86');
insert into dim_province_info values('31','上海市','86');
insert into dim_province_info values('50','重庆市','86');
insert into dim_province_info values('13','河北省','86');
insert into dim_province_info values('41','河南省','86');
insert into dim_province_info values('53','云南省','86');
insert into dim_province_info values('21','辽宁省','86');
insert into dim_province_info values('23','湖南省','86');
insert into dim_province_info values('43','黑龙江省','86');
insert into dim_province_info values('34','安徽省','86');
insert into dim_province_info values('37','山东省','86');
insert into dim_province_info values('65','新疆维吾尔自治区','86');
insert into dim_province_info values('32','江苏省','86');
insert into dim_province_info values('33','浙江省','86');
insert into dim_province_info values('36','江西省','86');
commit;

-- 城市信息表插入数据
insert into dim_city_info values('320100','南京市','32');
insert into dim_city_info values('320200','无锡市','32');
insert into dim_city_info values('320300','徐州市','32');
insert into dim_city_info values('320400','常州市','32');
insert into dim_city_info values('320500','苏州市','32');
insert into dim_city_info values('320600','南通市','32');
insert into dim_city_info values('320700','连云港市','32');
insert into dim_city_info values('320800','淮安市','32');
insert into dim_city_info values('320900','盐城市','32');
insert into dim_city_info values('321000','扬州市','32');
insert into dim_city_info values('321100','镇江市','32');
insert into dim_city_info values('321200','泰州市','32');
insert into dim_city_info values('321300','宿迁市','32');
commit;

-- 用户浏览日志表插入数据
insert into t_access_log values('{"user_id": "c001","productId": "g002","productName": "儿童历史地理大百科全书 绘本礼盒典藏全40册","viewTimestamp": "2022-11-07 13:42:38"}');

insert into t_access_log values('{"user_id": "c006","productId": "g007","productName": "云南实建褚橙冰糖橙","viewTimestamp": "2022-11-09 01:02:18"}');

insert into t_access_log values('{"user_id": "c002","productId": "g001","productName": "OPPO K9x 5G全网通手机","viewTimestamp": "2022-11-07 11:02:28"}');

insert into t_access_log values('{"user_id": "c006","productId": "g001","productName": "OPPO K9x 5G全网通手机","viewTimestamp": "2022-11-09 13:01:05"}');

insert into t_access_log values('{"user_id": "c008","productId": "g005","productName": "小米粽 平板电脑","viewTimestamp": "2022-11-09 01:02:18"}');

insert into t_access_log values('{"user_id": "c006","productId": "g007","productName": "云南实建褚橙冰糖橙","viewTimestamp": "2022-11-09 01:02:18"}');

insert into t_access_log values('{"user_id": "u001","productId": "g001","productName": "OPPO K9x 5G全网通手机","viewTimestamp": "2022-11-08 08:45:00"}');

insert into t_access_log values('{"user_id": "u003","productId": "g005","productName": "小米粽 平板电脑","viewTimestamp": "2022-11-09 01:02:18"}');

insert into t_access_log values('{"user_id": "u001","productId": "g006","productName": "GoPro HERO11 Black运动相机","viewTimestamp": "2022-11-07 09:06:27"}');

insert into t_access_log values('{"user_id": "u001","productId": "g002","productName": "儿童历史地理大百科全书 绘本礼盒典藏全40册","viewTimestamp": "2022-11-09 08:02:29"}');

commit;


-- 商品类别表插入数据
insert into dim_goods_type values('g001','1','3C产品');
insert into dim_goods_type values('g002','2','书籍');
insert into dim_goods_type values('g003','3','日用品');
insert into dim_goods_type values('g004','4','家电');
insert into dim_goods_type values('g005','1','3C产品');
insert into dim_goods_type values('g006','1','3C产品');
insert into dim_goods_type values('g007','5','水果');
insert into dim_goods_type values('g008','3','日用品');
insert into dim_goods_type values('g009','6','鞋帽');
commit;

执行结果:
在这里插入图片描述
再执行下面的SQL查询语句。

-- 设置sql_mode
set sql_mode = 'NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES';

-- 创建数据库result,并进行切换
create database result;

use result;

-- 创建城市订单总额表
CREATE TABLE t_city_sale_total(
	city_name         varchar(100) not null,
	city_total_price  int not null
)DEFAULT CHARSET='utf8';


-- 创建商品类别浏览量表
CREATE TABLE t_goods_type_view_count(
	goods_type        varchar(100) not null,
	view_count        int not null
)DEFAULT CHARSET='utf8';

执行结果截图:
在这里插入图片描述
刷新之后,查看新创建的两个数据库:mall和result
在这里插入图片描述

分析一下数据库及表的内容。
(1)mall.t_access_log
在这里插入图片描述
(2)mall.t_sale_order
在这里插入图片描述
(3)mall.t_user_info
在这里插入图片描述
(4)result数据库
在这里插入图片描述

2.1.2 初始化Hive脚本

首先,在虚拟机上开启hive,在虚拟机上上传一个SQL文件:init_hive.sql 用于在hive中创建数据表。

项目中想要做的就是通过sqoop将MySQL中的数据导入到hive大数据平台,所以这个里面的创建八张表和上面的MySQL中创建的八张表一一对应

--创建数据库mall_bigdata
create database if not exists mall_bigdata;

--切换数据库至mall_bigdata
use mall_bigdata;

--创建用户信息表
create table if not exists mall_bigdata.ods_user_info
(
	 user_id       STRING    comment "用户id"
	,user_name     STRING    comment "用户姓名"
	,sex           STRING    comment "性别"
	,age           INT       comment "年龄"
	,country_code  STRING    comment "国家码"
    ,province_code STRING    comment "省份码"
	,city_code     STRING    comment "城市码"
)
comment "用户信息表"
row format delimited fields terminated by ","
stored as textfile;

--创建订单表
create table if not exists mall_bigdata.ods_sale_order
(
	 sale_id       STRING    comment "订单id"
	,user_id       STRING    comment "用户id"
	,goods_id      STRING    comment "商品id"
	,price         INT       comment "单价"
	,sale_count    INT       comment "购买数量"
    ,total_price   INT       comment "购买总金额"
	,create_time   STRING    comment "订单生成时间"
)
comment "销售订单表"
row format delimited fields terminated by ","
stored as textfile;

--创建商品信息表
create table if not exists mall_bigdata.dim_goods_info
(
	 goods_id       STRING    comment "商品id"
	,goods_name     STRING    comment "商品名称"
)
comment "商品信息表"
row format delimited fields terminated by ","
stored as textfile;


--创建国家信息表
create table if not exists mall_bigdata.dim_country_info
(
	 country_code       STRING    comment "国家码"
	,country_name       STRING    comment "国家名称"
)
comment "国家信息表"
row format delimited fields terminated by ","
stored as textfile;


--创建省份信息表
create table if not exists mall_bigdata.dim_province_info
(
	 province_code       STRING    comment "省份码"
	,province_name       STRING    comment "省份名称"
	,country_code        STRING    comment "国家码"
)
comment "省份信息表"
row format delimited fields terminated by ","
stored as textfile;


--创建城市信息表
create table if not exists mall_bigdata.dim_city_info
(
	 city_code       STRING    comment "城市码"
	,city_name       STRING    comment "城市名称"
	,province_code   STRING    comment "省份码"
)
comment "城市信息表"
row format delimited fields terminated by ","
stored as textfile;

--创建用户浏览日志表
create table if not exists mall_bigdata.ods_access_log
(
	 log_str       STRING    comment "浏览日志"
)
comment "用户浏览日志表"
row format delimited fields terminated by "|"
stored as textfile;


--创建商品类别表
create table if not exists mall_bigdata.dim_goods_type
(
	 goods_id      STRING    comment "商品id"
	,type_id       STRING    comment "商品类别id"
	,type_name     STRING    comment "商品类别名称"
)
comment "商品类别表"
row format delimited fields terminated by ","
stored as textfile;

在这里插入图片描述
上传到虚拟机之后,在hive上执行该sql文件

source /opt/sql/mall/init_hive.sql;

创建之后,检查一下,可以看到创建了一个新的数据库:mall_bigdata
在这里插入图片描述
再查看一下mall_bigdata里面的数据表

use mall_bigdata;
show tables;

在这里插入图片描述

2.2 数据传输

完成“2.通过sqoop将mysql中的业务数据导入到大数据平台(hive)”。

2.2.1 下载安装sqoop

可以参考文章Linux上安装sqoop1.4.6

2.2.2 sqoop导入数据

进入sqoop目录bin下:

cd /opt/softs/sqoop1.4.6/bin
sqoop import \
--connect jdbc:mysql://bigdata04:3306/mall \
--username root \
--password cxy20030419 \
--table t_user_info \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "," \
--hive-overwrite \
--hive-table mall_bigdata.ods_user_info

解析:

在这里插入图片描述
在这里插入图片描述
检查一下
在这里插入图片描述

没有问题后,然后依次对八张表,都进行上述操作。(修改MySQL中表名以及hive中对应表名即可)

sqoop import \
--connect jdbc:mysql://bigdata04:3306/mall \
--username root \
--password cxy20030419 \
--table t_sale_order \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "," \
--hive-overwrite \
--hive-table mall_bigdata.ods_sale_order

sqoop import \
--connect jdbc:mysql://bigdata04:3306/mall \
--username root \
--password cxy20030419 \
--table t_access_log \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "," \
--hive-overwrite \
--hive-table mall_bigdata.ods_access_log 

sqoop import \
--connect jdbc:mysql://bigdata04:3306/mall \
--username root \
--password cxy20030419 \
--table dim_country_info \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "," \
--hive-overwrite \
--hive-table mall_bigdata.ods_country_info

sqoop import \
--connect jdbc:mysql://bigdata04:3306/mall \
--username root \
--password cxy20030419 \
--table dim_goods_info \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "," \
--hive-overwrite \
--hive-table mall_bigdata.ods_goods_info

sqoop import \
--connect jdbc:mysql://bigdata04:3306/mall \
--username root \
--password cxy20030419 \
--table dim_province_info \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "," \
--hive-overwrite \
--hive-table mall_bigdata.ods_province_info

sqoop import \
--connect jdbc:mysql://bigdata04:3306/mall \
--username root \
--password cxy20030419 \
--table dim_city_info \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "," \
--hive-overwrite \
--hive-table mall_bigdata.ods_city_info

sqoop import \
--connect jdbc:mysql://bigdata04:3306/mall \
--username root \
--password cxy20030419 \
--table dim_goods_type \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "," \
--hive-overwrite \
--hive-table mall_bigdata.ods_goods_type

2.3 生成数据报表

2.3.1 补全用户信息表

首先需要生成一个临时的辅助表,用来补全用户信息表中的关于用户的所在国家名称、所在省份名称、所在城市名称。

--切换数据库
use mall_bigdata;

--补全用户信息表中的关于用户的所在国家名称、所在省份名称、所在城市名称,一个临时表
--如果所生成的字段在不同表中同名列,那就需要指定是在哪个表中选择的,一般是从最左表进行选择
--在运行脚本的时候进行创建,运行结束之后就删除
--dwd是明细层
--hive中可以将一个查到的数据集作为新表的字段,所以不需要明确表的字段,直接使用select的结果建表
create table if not exists mall_bigdata.tmp_dwd_user_info
as
	select 
		user_id,
		user_name,
		sex,
		age,
		country_name,
		province_name,
		city_name
	from
		(select
			user_id,
			user_name,
			sex,
			age,
			country_code,
			province_code,
			city_code
		from mall_bigdata.ods_user_info) t1
		left join
		(
			select
				country_code,
				country_name
			from ods_country_info
		) t2
		on t1.country_code = t2.country_code
		left join
		(
			select
				province_code,
				province_name,
				country_code
			from ods_province_info
		) t3
		on t1.province_code = t3.province_code and t1.country_code = t3.country_code
				left join
		(
			select
				city_code,
				city_name,
				province_code
			from ods_city_info
		) t4
		on t1.city_code = t4.city_code and t1.province_code = t4.province_code;

执行sql文件之后,查看一下数据库中的数据

select user_name,country_name,province_name,city_name from mall_bigdata.tmp_dwd_user_info;

在这里插入图片描述

2.3.2 补全订单表用户、商品信息

第二步,补全订单表的用户名称和商品名称,过滤中国用户的订单记录。

--补全订单表中用户名称和商品名称
--过滤中国用户的订单记录
create table if not exists mall_bigdata.dwd_sale_order_detail
as
	select
		sale_id,
		t1.user_id,
		user_name,
		sex,
		age,
		country_name,
		province_name,
		city_name,
		t1.goods_id,
		goods_name,
		price,
		sale_count,
		total_price,
		create_time
	from
	(
		select
			sale_id,
			user_id,
			goods_id,
			price,
			sale_count,
			total_price,
			create_time
		from ods_sale_order
	)t1
	left on
	(
		select 
			user_id,
			user_name,
			sex,
			age,
			country_name,
			province_name,
			city_name
		from tmp_dwd_user_info
	)t2
	on t1.user_id = t2.user_id
	left join
	(
		select 
			goods_id,
			goods_name
		from ods_goods_info
	)t3
	on t1.goods_id = t3.goods_id
	where t2.country_name='中国';

--删除临时表,过河就拆桥
drop table if exists tmp_dwd_user_info;

执行sql文件之后,查看表中的数据
在这里插入图片描述

2.3.3 计算不同城市的销售总额

dws是汇总层,汇总层的数据一般都是来源于明细层dwd,比如我现在要计算不同城市的销售总额的时候,就在明细层里面先对每个订单的用户、商品、销售信息进行汇总,其中包括订单总额和城市信息等,这些就是明细层里面进行的明细数据。这样我们只需要从明细层里面进行一些数据的计算汇总即可得到最终的数据报表。

create table if not exists mall_bigdata.dws_sale_order_city_total
as
	select
		city_name,
		sum(total_price) as total_price
	from dwd_sale_order_detail
	group by city_name;

运行完sql文件之后,可以查看一下汇总的报表数据。

source /opt/sql/mall/dws_sale_order_city_total.sql;

在这里插入图片描述

2.3.4 计算用户商品类别浏览量表

提取用户浏览日志表中的商品信息,补全商品的类型
再根据商品类别的不同,计算用户对于不同的商品类型的浏览次数

create table if not exists mall_bigdata.dws_view_goods_type_count
as
	select 
		type_name,
		count(type_name) as view_goods_type_count
	from
	(
		select
			get_json_object(log_str,'$.productId') as product_id
		from mall_bigdata.ods_access_log
	)t1
	inner join
	(
		select 
			goods_id,
			type_name
		from ods_goods_type
	)t2
	on t1.product_id = t2.goods_id
	group by type_name;

运行完sql文件之后,可以查看一下汇总的报表数据。

source /opt/sql/mall/dws_view_goods_type_count.sql;

在这里插入图片描述

2.4 数据报表导出到MySQL

首先需要将MySQL的字符集修改为utf-8,详见文章Linux中MySQL修改字符集为utf-8
也就是完成“4.再通过sqoop将数据报表导出到mysql”。

hive的默认分隔符是"\001"

cd /opt/softs/sqoop1.4.6/bin

-- sqoop导出数据到mysql

sqoop export \
--connect jdbc:mysql://bigdata04:3306/result \
--username root \
--password cxy20030419 \
--table  t_city_sale_total \
--num-mappers 1 \
--export-dir /user/hive/warehouse/mall_bigdata.db/dws_sale_order_city_total \
--input-fields-terminated-by  "\001"


sqoop export \
--connect jdbc:mysql://bigdata04:3306/result \
--username root \
--password cxy20030419 \
--table  t_goods_type_view_count \
--num-mappers 1 \
--export-dir /user/hive/warehouse/mall_bigdata.db/dws_view_goods_type_count \
--input-fields-terminated-by  "\001"

在这里插入图片描述
在这里插入图片描述

2.5 使用FineReport制作数据报表

先finereport连接MySQL数据库
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

新建聚合报表

在这里插入图片描述
在这里插入图片描述
同样的方法可以制作商品类别浏览量表:
在这里插入图片描述

可以预览之后保存:

在这里插入图片描述

;