前面是分部讲解,完整代码在最后。
导入模块 :
import os
from shutil import copy, rmtree
import random
创建文件夹 :
def make_file(file_path: str):
if os.path.exists(file_path):
rmtree(file_path)
os.makedirs(file_path)
划分数据集的比例,本文是0.1:验证集的数量占总数据集的10%比如填0.1就是验证集的数量占总数据集的10%
random.seed(0)
split_rate = 0.1
数据集的存放:新建一个数据文件夹,将划分的数据集存放进去
data_path = r'D:\chengxu\data\caodi' # 数据集存放的地方
data_root = r'D:\chengxu\data\cd' # 这里是生成的训练集和验证集所处的位置,这里设置的是在当前文件夹下。
data_class = [cla for cla in os.listdir(data_path)]
print("数据的种类分别为:")
print(data_class) # 输出数据种类
建立训练集文件夹:
train_data_root = os.path.join(data_root, "train") # 训练集的文件夹名称为 train
make_file(train_data_root)
for num_class in data_class:
make_file(os.path.join(train_data_root, num_class))
建立测试集文件夹:
val_data_root = os.path.join(data_root, "val") # 验证集的文件夹名称为 val
make_file(val_data_root)
for num_class in data_class:
make_file(os.path.join(val_data_root, num_class))
划分数据:
for num_class in data_class:
num_class_path = os.path.join(data_path, num_class)
images = os.listdir(num_class_path)
num = len(images)
val_index = random.sample(images, k=int(num * split_rate)) # 随机抽取图片
for index, image in enumerate(images):
if image in val_index:
# 将划分到验证集中的文件复制到相应目录
data_image_path = os.path.join(num_class_path, image)
val_new_path = os.path.join(val_data_root, num_class)
copy(data_image_path, val_new_path)
else:
# 将划分到训练集中的文件复制到相应目录
data_image_path = os.path.join(num_class_path, image)
train_new_path = os.path.join(train_data_root, num_class)
copy(data_image_path, train_new_path)
print("\r[{}] split_rating [{}/{}]".format(num_class, index + 1, num), end="") # processing bar
print()
print(" ")
print(" ")
print("划分成功")
完整代码:
import os
from shutil import copy, rmtree
import random
def make_file(file_path: str):
if os.path.exists(file_path):
rmtree(file_path)
os.makedirs(file_path)
random.seed(0)
# 将数据集中10%的数据划分到验证集中
split_rate = 0.1
data_path = r'D:\chengxu\data\caodi' # 数据集存放的地方,建议在程序所在的文件夹下新建一个data文件夹,将需要划分的数据集存放进去
data_root = r'D:\chengxu\data\cd' # 这里是生成的训练集和验证集所处的位置,这里设置的是在当前文件夹下。
data_class = [cla for cla in os.listdir(data_path)]
print("数据的种类分别为:")
print(data_class)
# 建立保存训练集的文件夹
train_data_root = os.path.join(data_root, "train") # 训练集的文件夹名称为 train
make_file(train_data_root)
for num_class in data_class:
# 建立每个类别对应的文件夹
make_file(os.path.join(train_data_root, num_class))
# 建立保存验证集的文件夹
val_data_root = os.path.join(data_root, "val") # 验证集的文件夹名称为 val
make_file(val_data_root)
for num_class in data_class:
# 建立每个类别对应的文件夹
make_file(os.path.join(val_data_root, num_class))
for num_class in data_class:
num_class_path = os.path.join(data_path, num_class)
images = os.listdir(num_class_path)
num = len(images)
val_index = random.sample(images, k=int(num * split_rate)) # 随机抽取图片
for index, image in enumerate(images):
if image in val_index:
data_image_path = os.path.join(num_class_path, image)
val_new_path = os.path.join(val_data_root, num_class)
copy(data_image_path, val_new_path)
else:
data_image_path = os.path.join(num_class_path, image)
train_new_path = os.path.join(train_data_root, num_class)
copy(data_image_path, train_new_path)
print("\r[{}] split_rating [{}/{}]".format(num_class, index + 1, num), end="") # processing bar
print()
print(" ")
print(" ")
print("划分成功")