二:Sensor Hal层代码分析
Hal code放在/vendor/qcom/proprietary/sensors-see/中
图5
sensors-hal文件夹中包含framework和sensors文件夹,为本文重点分析对象。
首先分析sensors文件夹:
根据C++继承的特性,相同的操作各个class共同拥有,不同的操作每个class可以重写,该文件夹内文件为每个sensor不同的地方,porting sensor主要是在这部分做的。sensors文件夹中包含很多sensor cpp文件比如:accelerometer.cpp为accel sensor的hal层code,step_count.cpp为计步器的hal层的code等等,主要是针对不同sensor type的操作。下面以accelerometer.cpp为例:
//accelerometer.cpp
SENSOR_MODULE_INIT(accelerometer_module_init);
//sensor.h
#define SENSOR_MODULE_INIT(module_init_func) \
static const bool __mod_init = (module_init_func)();
每个cpp都有SENSOR_MODULE_INIT入口,__mod_init具体实现在code没有找到,不过应该类似kernel中module_init,在系统加载.so时调用。故可知,所有特定sensor的cpp在加载.so时会被调SENSOR_MODULE_INIT进行加载。
//accelerometer.cpp
static bool accelerometer_module_init()
{
/* register supported sensor types with factory */
sensor_factory::register_sensor(SENSOR_TYPE_ACCELEROMETER,
get_available_accel_calibrated);
sensor_factory::register_sensor(SENSOR_TYPE_ACCELEROMETER_UNCALIBRATED,
get_available_accel_uncalibrated);
sensor_factory::request_datatype(SSC_DATATYPE_ACCEL);
return true;
}
//sensor_factory.h
static void register_sensor(int type, get_available_sensors_func func)
{
try {
callbacks().emplace(type, func);
} catch (const std::exception& e) {
sns_loge("failed to register type %d", type);
}
}
static std::unordered_map<int, get_available_sensors_func>& callbacks()
{
static std::unordered_map<int, get_available_sensors_func> _callbacks;
return _callbacks;
}
//sensor_factory.h
static void request_datatype(const char *datatype)
{
try {
datatypes().insert(std::string(datatype));
} catch (const std::exception& e) {
sns_loge("failed to insert %s", datatype);
}
}
所以在,在.so被调用后,accelerometer_module_init会被执行!通过register_sensor将type和func放入callbacks的unordered_map中。并将datatype插入到datatypes的unordered_set中,以便后面使用。
下面以get_available_accel_calibrated为例继续研究:
//accelerometer.cpp
static vector<unique_ptr<sensor>> get_available_accel_calibrated()
{
const vector<sensor_uid>& accel_suids =
sensor_factory::instance().get_suids(SSC_DATATYPE_ACCEL); // No.1
vector<unique_ptr<sensor>> sensors;
for (const auto& suid : accel_suids) {
if (!(sensor_factory::instance().get_settings() // No.2
& DISABLE_WAKEUP_SENSORS_FLAG)) {
try {
sensors.push_back(make_unique<accelerometer>(suid, SENSOR_WAKEUP, //No.3
SENSOR_CALIBRATED));
} catch (const exception& e) {
sns_loge("failed for wakeup, %s", e.what());
}
}
try {
sensors.push_back(make_unique<accelerometer>(suid, SENSOR_NO_WAKEUP,
SENSOR_CALIBRATED));
} catch (const exception& e) {
sns_loge("failed for nowakeup, %s", e.what());
}
}
return sensors;
}
No.1中:accel_suids可以通过sensor_factory实例中get_suids函数来获取:
const std::vector<sensor_uid>& sensor_factory::get_suids(const std::string& datatype) const
{
auto it = _suid_map.find(datatype);
if (it != _suid_map.end()) {
return it->second;
} else {
static vector<sensor_uid> empty;
return empty;
}
}
从_suids_map中查找datatype来获取accel的suid。那什么时候将accel的suid插入到_suids_map中内,在framework文件夹中,后续会介绍。
No.2中:通过getsetting来查看是否有DISABLE_WAKEUP_SENSORS_FLAG flag,若有则为no wakeup,若无则为wake up sensor。
No.3中:为调用accelerometer的构造函数。
accelerometer::accelerometer(sensor_uid suid,
sensor_wakeup_type wakeup,
sensor_cal_type cal_type):
ssc_sensor(suid, wakeup) // No.a
{
if (cal_type == SENSOR_UNCALIBRATED) { // No.b
set_type(SENSOR_TYPE_ACCELEROMETER_UNCALIBRATED);
set_string_type(SENSOR_STRING_TYPE_ACCELEROMETER_UNCALIBRATED);
set_sensor_typename("Accelerometer-Uncalibrated");
} else {
set_type(SENSOR_TYPE_ACCELEROMETER);
set_string_type(SENSOR_STRING_TYPE_ACCELEROMETER);
set_sensor_typename("Accelerometer");
}
...
_cal_type = cal_type;
set_fifo_reserved_count(ACCEL_RESERVED_FIFO_COUNT);
set_resampling(true);
/* convert range from Gs to m/s^2 */
set_max_range(get_sensor_info().maxRange * ONE_G);
/* convert resolution from mG to m/s^2 */
set_resolution(get_sensor_info().resolution * ONE_G / 1000.0);
}
No.a中:继承ssc_sensor,ssc_sensor的构造函数中,主要设置一些common的参数。
No.b中:设置accel中不common的参数。比如string_type、sensor_typename、是否使用resampling、最大range、分辨率等等。
Ok,accelerometer.cpp基本介绍完毕。
对了,还有个handle_sns_std_sensor_event函数是干什么的呢?
//accelerometer.cpp
virtual void handle_sns_std_sensor_event(
const sns_client_event_msg_sns_client_event& pb_event) override;
void accelerometer::handle_sns_std_sensor_event(
const sns_client_event_msg_sns_client_event& pb_event)
{
sns_std_sensor_event pb_sensor_event;
pb_sensor_event.ParseFromString(pb_event.payload());
sensors_event_t hal_event = create_sensor_hal_event(pb_event.timestamp());
if (_cal_type == SENSOR_CALIBRATED) {
hal_event.acceleration.x = pb_sensor_event.data(0);
hal_event.acceleration.y = pb_sensor_event.data(1);
hal_event.acceleration.z = pb_sensor_event.data(2);
hal_event.acceleration.status =
sensors_hal_sample_status(pb_sensor_event.status());
...
}
if (_cal_type == SENSOR_UNCALIBRATED) {
hal_event.uncalibrated_accelerometer.x_uncalib = pb_sensor_event.data(0);
hal_event.uncalibrated_accelerometer.y_uncalib = pb_sensor_event.data(1);
hal_event.uncalibrated_accelerometer.z_uncalib = pb_sensor_event.data(2);
hal_event.uncalibrated_accelerometer.x_bias = 0;
hal_event.uncalibrated_accelerometer.y_bias = 0;
hal_event.uncalibrated_accelerometer.z_bias = 0;
....
}
submit_sensors_hal_event(hal_event);
}
//framework/ssc_sensor.cpp
void ssc_sensor::handle_sns_std_sensor_event(
const sns_client_event_msg_sns_client_event& pb_event)
{
sns_std_sensor_event pb_stream_event;
pb_stream_event.ParseFromString(pb_event.payload());
sensors_event_t hal_event = create_sensor_hal_event(pb_event.timestamp());
int num_items = pb_stream_event.data_size();
...
for (int i = 0; i < num_items; i++) {
hal_event.data[i] = pb_stream_event.data(i);
}
...
submit_sensors_hal_event(hal_event);
}
可以看到handle_sns_std_sensor_event为虚函数,在framework中有实现,在accelerometer.cpp中也有实现。Ok,若sensors文件中xxxx.cpp中没有重写handle_sns_std_sensor_event则可以使用framework common的进行实现,若有的话,则使用xxxx.cpp中的handle_sns_std_sensor_event。
接着介绍framework文件夹:
//sensors_hw_module.cpp
struct sensors_module_t HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.module_api_version = (uint16_t)SENSORS_DEVICE_API_VERSION_1_4,
.hal_api_version = HARDWARE_HAL_API_VERSION,
.id = SENSORS_HARDWARE_MODULE_ID,
.name = "QTI Sensors HAL Module",
.author = "Qualcomm Technologies, Inc.",
.methods = &sensors_module_methods,
.dso = NULL,
.reserved = {0},
},
.get_sensors_list = get_sensors_list,
.set_operation_mode = sensors_set_operation_mode,
};
对Android Hal层比较熟的都知道sensors_module_t这个数据结构,hardware通过dlopen打开.so lib,并通过dlsym加载symbols,然后即可使用相应的方法,具体细节不再重复介绍。
从hardware/libhardware/modules/sensors/multihal.cpp中可以看到,首先会调用get_sensor_list函数。
static void lazy_init_sensors_list() {
...
const struct sensor_t *subhal_sensors_list;
for (std::vector<hw_module_t*>::iterator it = sub_hw_modules->begin();
it != sub_hw_modules->end(); it++) {
struct sensors_module_t *module = (struct sensors_module_t*) *it;
global_sensors_count += module->get_sensors_list(module, &subhal_sensors_list);
ALOGV("increased global_sensors_count to %d", global_sensors_count);
}
...
}
对应sensor_hw_module.cpp中函数如下:
//sensors_hw_module.cpp
static int get_sensors_list(struct sensors_module_t* module,
struct sensor_t const** list)
{
sensors_hal& hal = sensors_hal::get_instance();
return hal.get_sensors_list(list);
}
获取sensors_hal的实例,然后调用get_sensors_list
//sensors_hal.h
static sensors_hal& get_instance()
{
static sensors_hal hal;
return hal;
}
sensor_hal为static的,故执行构造函数。
//sensors_hal.cpp
sensors_hal::sensors_hal()
{
...
try {
init_sensors();
...
}
...
}
void sensors_hal::init_sensors()
{
auto sensors = sensor_factory::instance().get_all_available_sensors(); //No.1
auto cb = [this](const auto& event, auto wakeup) { _event_queue.push(event, wakeup); }; //No.2
for (unique_ptr<sensor>& s : sensors) { //No.3
assert(s != nullptr);
s->register_callback(cb);
const sensor_t& sensor_info = s->get_sensor_info();
...
_hal_sensors.push_back(sensor_info);
_sensors[sensor_info.handle] = std::move(s);
}
...
}
No.1中:通过sensor_factory实例中get_available_sensors()来获取sensor class。
sensor_factory实例:
static sensor_factory& instance()
{
static sensor_factory factory;
return factory;
}
调构造函数
sensor_factory::sensor_factory()
{
...
_settings = get_sns_settings(); // No.1
_pending_attributes = 0; // No.2
if (!(_settings & DISABLE_SENSORS_FLAG)) {
/* find available sensors on ssc */
discover_sensors(); // No.3
if (_suid_map.size() > 0) {
retrieve_attributes(); // No.4
}
...
}
}
No.1中:通过"/persist/sensors/registry/registry/sensors_settings"文件来设置setting。
No.2中:_pending_attributes为pending sensor的数目。
No.3中:discover_sensors用来发现所有的sensor。
//sensor_factory.cpp
void sensor_factory::discover_sensors()
{
using namespace std::chrono;
suid_lookup lookup( //No.a
[this](const string& datatype, const auto& suids)
{
suid_lookup_callback(datatype, suids);
});
for (const string& dt : datatypes()) {
sns_logd("requesting %s", dt.c_str());
lookup.request_suid(dt); //No.b
}
auto tp_wait_start = steady_clock::now();
/* wait for some time for discovery of available sensors */
auto delay = get_discovery_timeout_ms();
this_thread::sleep_for(std::chrono::milliseconds(delay));
/* additional wait for discovery of critical sensors */
wait_for_mandatory_sensors(lookup);
sns_logd("available sensors on ssc");
for (const auto& item : _suid_map) {
sns_logd("%-20s%4u", item.first.c_str(), (unsigned int)item.second.size());
}
}
No.a中:suid_lookup继承_ssc_conn(get_ssc_event_cb()),其中get_ssc_event_cb为回调函数。event在该函数中处理。
suid_lookup_callback(datatype, suids);函数比较重要,把suid加入到_suid_map中,回头看sensors文件夹中的 sensor_factory::get_suids函数,即从_suid_map中查找datatype为accel的suid。前后联系在一起了。那么suids和datatype哪儿来的呢?透露一下,发送request后等待callback函数接收到event并获取到datatype和suids。然后会执行该函数。
No.b中:通过loopup类中的request_suid发送request给SLPI中的sensor。dt为accel、gryo、mag等等。
下面分析下request_suid函数:
//ssc_utils.cpp
void suid_lookup::request_suid(std::string datatype)
{
sns_client_request_msg pb_req_msg; //No.a
sns_suid_req pb_suid_req;
string pb_suid_req_encoded;
const sensor_uid LOOKUP_SUID = { //No.b
12370169555311111083ull,
12370169555311111083ull
};
...
/* populate SUID request */ //No.c
pb_suid_req.set_data_type(datatype);
pb_suid_req.set_register_updates(true);
pb_suid_req.SerializeToString(&pb_suid_req_encoded);
/* populate the client request message */
pb_req_msg.set_msg_id(SNS_SUID_MSGID_SNS_SUID_REQ); //No.d
pb_req_msg.mutable_request()->set_payload(pb_suid_req_encoded);
pb_req_msg.mutable_suid()->set_suid_high(LOOKUP_SUID.high);
pb_req_msg.mutable_suid()->set_suid_low(LOOKUP_SUID.low);
pb_req_msg.mutable_susp_config()->set_delivery_type(SNS_CLIENT_DELIVERY_WAKEUP);
pb_req_msg.mutable_susp_config()->set_client_proc_type(SNS_STD_CLIENT_PROCESSOR_APSS);
string pb_req_msg_encoded;
pb_req_msg.SerializeToString(&pb_req_msg_encoded);
_ssc_conn.send_request(pb_req_msg_encoded); //No.e
}
//sns_client.pb.h
typedef struct _sns_client_request_msg {
sns_std_suid suid;
uint32_t msg_id;
sns_client_request_msg_suspend_config susp_config;
sns_std_request request;
/* @@protoc_insertion_point(struct:sns_client_request_msg) */
} sns_client_request_msg;
No.a中:sns_client_request_msg 为最外层的requset封装。sns_suid_req 包在sns_client_request_msg->requset->payload中,pb_suid_req_encoded 为encode后的字符串。
No.b中:suid sensor的suid。这里需要说明一下,在sdm845 see中,包含物理sensor、虚拟sensor和platform sensor。前面两个sensor我们都了解,platform sensor是什么呢?原来 高通在see上定义专门为platform服务的sensor,这些sensor是内嵌的,可以被任何sensor或者sensor instance使用,来提供相应的功能。这里suid sensor为platform sensor,它的作用是为所有其他sensor提供suid。suid sensor会根据不同的datatype提供相应的suid。当然suid sensor也有个suid。这个suid也是固定不变的,就是No.b中的数字。
拓展:除了suid sensor外还有很多platform sensor,比如:register sensor , 可以解析并获取其他sensor的register;Interrupt sensor,为其他sensor提供中断;等等。
No.c中:填充pb_suid_req,设置datatype,register_updates;并将pb_suid_req序列化成字符串格式,成为pb_suid_req_encoded,以便ps_req_msg使用。
No.d中:填充pb_req_msg,设置msg_id,这里msg_id比较重要,到SLPI侧sensor driver中,会根据该msg_id做相应的操作,这是后话。
设置成员request中的payload为pb_suid_req_encoded。设置成员suid中的suid_high、suid_low为LOOKUP_SUID的高、低位。
设置成员susp_config中内容。。。
最后将pb_req_msg序列化字符串pb_req_msg_encoded。
No.e中:通过_ssc_conn.request将该字符串发送出去。
发送的流程我们在此不再研究,都是高通封装好的API,我们直接使用即可,有兴趣的童鞋可以继续追code。
发送完request后,我们需要静等callback。根据前面描述可知,callback为suid_lookup::handle_ssc_event()函数,在该函数中,
No.a中sns_client_event_msg为对应event的封装,通过PaseFromArray解码data & size生成。
//ssc_utils.cpp
void suid_lookup::handle_ssc_event(const uint8_t *data, size_t size)
{
/* parse the pb encoded event */
sns_client_event_msg pb_event_msg; //No.a
pb_event_msg.ParseFromArray(data, size);
/* iterate over all events in the message */
for (int i = 0; i < pb_event_msg.events_size(); i++) { //No.b
auto& pb_event = pb_event_msg.events(i);
if (pb_event.msg_id() != SNS_SUID_MSGID_SNS_SUID_EVENT) {
sns_loge("invalid event msg_id=%d", pb_event.msg_id());
continue;
}
sns_suid_event pb_suid_event; //No.c
pb_suid_event.ParseFromString(pb_event.payload());
const string& datatype = pb_suid_event.data_type();
...
/* create a list of all suids found for this datatype */
vector<sensor_uid> suids(pb_suid_event.suid_size()); //No.d
for (int j=0; j < pb_suid_event.suid_size(); j++) {
suids[j] = sensor_uid(pb_suid_event.suid(j).suid_low(),
pb_suid_event.suid(j).suid_high());
}
/* send callback for this datatype */
_cb(datatype, suids);
}
}
//sns_suid.pb.h
typedef enum _sns_suid_msgid {
SNS_SUID_MSGID_SNS_SUID_REQ = 512,
SNS_SUID_MSGID_SNS_SUID_EVENT = 768
} sns_suid_msgid;
No.b中:要判断msg_id是否是SNS_SUID_MSGID_SNS_SUID_EVENT,可以看到与SNS_SUID_MSGID_SNS_SUID_REQ对应。
No.c中:同No.a一样,将pb_event.payload() 解码成sns_suid_event。
No.d中:创建一个suid的vector,将获得suid string放进去。然后调用_cb将suids保存起来,即调用suid_lookup_callback函数将datatype和suids放入到_suid_map的unordered_map中。
Ok,discover_sensors基本介绍完毕,sensor_factory构造函数中还会在retrieve_attributes()发送request来获取attribute。并放在_attributes的unordered_map中。操作基本相同,只是request发送的msg_id不同而已,在此不再详细介绍。
接着,继续回到init_sensors()的No.1中。
vector<unique_ptr<sensor>> sensor_factory::get_all_available_sensors() const
{
vector<unique_ptr<sensor>> all_sensors;
for (const auto& item : callbacks()) { // No.a
const auto& get_sensors = item.second; // No.b
vector<unique_ptr<sensor>> sensors = get_sensors();
sns_logd("type=%d, num_sensors=%u", item.first, (unsigned int)sensors.size());
for (auto&& s : sensors) {
all_sensors.push_back(std::move(s)); // No.c
}
}
return all_sensors;
}
No.a中,又看到了callbacks,上面sensors文件夹中可知,通过register_sensor将type和func放入到叫callbacks的unordered_map中。
No.b中,get_sensors获取callbacks中第二个元素get_available_sensors_func。然后通过get_sensors()函数即get_available_sensors_func()来获取sensor class。对应sensors文件中accelerometer.cpp中get_available_accel_calibrated()和get_available_accel_uncalibrated()。
No.c中,将获取到的vector<unique_ptr<sensor>>放到all_sensors这个容器中。以便后续使用!
回到init_sensors函数:
No.2中:将event和wakeup push到_event_queue中,即变成sensors_event_t _event_queue。
No.3中:register_callback 后,通过get_sensor_info()获取sensor_info。然后,把sensor_info push到_hal_sensors的vector中,将sensor class放到unordered_map _sensors的sensor_info.handle成员中。
init_sensors解析完毕。注:数据结构放在sensors.h中(/hardware/libhardware/include/hardware/sensors.h)
然后继续分析get_sensors_list:
//sensors_hal.cpp
int sensors_hal::get_sensors_list(const sensor_t **s_list)
{
int num_sensors = (int)_hal_sensors.size();
sns_logi("num_sensors=%d", num_sensors);
*s_list = &_hal_sensors[0];
return num_sensors;
}
通过判断_hal_sensors的大小获取到所有sensor的数目。并将_hal_sensors的首地址赋给s_list。
至此,系统获取了全部sensor的suid和attributes,并将其放在指定的容器中保存起来,完成sensor的初始化工作。下面就等user来使用了。
Enable/Disable Sensor
framewark层getDefaultSensor并registerListener后,经过一系列函数后,最终会调到sensors_hal中activate函数来enable/disable。
//sensors_hal.cpp
int sensors_hal::activate(int handle, int enable)
{
....
if (enable) {
sensor->activate();
} else {
sensor->deactivate();
}
....
return 0;
}
再以accelerometer.cpp为例:
因为accelerometer class继承ssc_sensor class,故会调用ssc_sensor中的activate。
//ssc_sensor.cpp
void ssc_sensor::activate()
{
std::lock_guard<mutex> lk(_mutex); //No.1
if (!is_active()) {
/* establish a new connection to ssc */
_ssc_conn = make_unique<ssc_connection>(
[this](const uint8_t *data, size_t size)
{
ssc_conn_event_cb(data, size); //No.2
});
if ( _wakeup_type == SENSOR_WAKEUP)
_ssc_conn->set_unsuspendable_channel(); //No.3
_ssc_conn->register_error_cb([this](auto e){ ssc_conn_error_cb(e); });
send_sensor_config_request(); //No.4
}
}
void ssc_sensor::deactivate()
{
std::lock_guard<mutex> lk(_mutex);
if (is_active()) {
_ssc_conn.reset(); //No.5
}
}
No.1中:申请互斥锁lk。
No.2中:接收event的callback函数。
No.3中:针对wakeup sensor处理的函数。
No.4中发送config request,enabe accle sensor。
等发送到enable request后,等待接收event。然后通过submit_sensors_hal_event(hal_event)将数据上报。
No.5中:deactivate为disable sensor,首先判断sensor状态是否是active,若是则reset,若不是,不做任何处理。
Factory Calibration
加速度传感器在进工厂时需要进行calibration。下面提供accelerometer calibration的code。顺便加深下上面学习的知识。
void accel_cal::init_ssc_connectiions()
{
ssc_suid_cb = [this](const uint8_t* msg , int msgLength)
{ this->handle_ssc_suid_event(msg, msgLength);};
if (NULL == (ssc_suid_obj = new ssc_connection(ssc_suid_cb))) {
ALOGE("ssc connection for suid failed");
return;
}
ssc_accel_cal_cb = [this](const uint8_t* msg , int msgLength)
{this->handle_ssc_accel_cal_event(msg, msgLength);};
if (NULL == (ssc_accel_cal_obj = new ssc_connection(ssc_accel_cal_cb))) {
ALOGE("ssc connection failed");
return;
}
ssc_accel_enable_cb = [this](const uint8_t* msg , int msgLength)
{this->handle_ssc_enable_accel_event(msg, msgLength);};
if (NULL == (ssc_accel_enable_obj = new ssc_connection(ssc_accel_enable_cb))) {
ALOGE("ssc connection failed");
return;
}
ALOGI("ssc connections successful");
}
上面函数是在new的时候调用,建立 3个callback函数,分别用来接收suid的event、accel calibration的event、accel enable的event。
int accel_cal::cal_init()
{
int result = true;
std::string datatype_accel = ACCEL;
pthread_mutex_lock(&cb_mutex);
request_suid(datatype_accel);
pthread_cond_wait(&condition, &cb_mutex);
enable_accel();
usleep(10000);
request_accel_cal();
timeout = 0;
while((accel_sensor_indication !=1) && timeout < 2000){
usleep(1000);
timeout++;
}
result = accel_sensor_indication;
return result;
}
上面request_suid发送request来获取accel的suid。
上面enable_accel发送request来enabe accel
上面request_accel_cal发送request来让SLPI侧的sensor进行calibration。
超时处理,当2s内没有接收到callback,退出。
void accel_cal::request_suid(std::string datatype)
{
sns_client_request_msg pb_req_msg;
sns_suid_req pb_suid_req;
string pb_suid_req_encoded;
const sensor_uid LOOKUP_SUID = { 12370169555311111083ull,
12370169555311111083ull };
/* populate SUID request */
pb_suid_req.set_data_type(datatype);
pb_suid_req.set_register_updates(false);
pb_suid_req.SerializeToString(&pb_suid_req_encoded);
/* populate the client request message */
pb_req_msg.set_msg_id(SNS_SUID_MSGID_SNS_SUID_REQ);
pb_req_msg.mutable_request()->set_payload(pb_suid_req_encoded);
pb_req_msg.mutable_suid()->set_suid_high(LOOKUP_SUID.high);
pb_req_msg.mutable_suid()->set_suid_low(LOOKUP_SUID.low);
pb_req_msg.mutable_susp_config()->set_delivery_type(
SNS_CLIENT_DELIVERY_NO_WAKEUP);
pb_req_msg.mutable_susp_config()->set_client_proc_type(
SNS_STD_CLIENT_PROCESSOR_APSS);
string pb_req_msg_encoded;
pb_req_msg.SerializeToString(&pb_req_msg_encoded);
//DEBUG_LOG(log_instance," sending request to QMI connection for accel suid ");
ssc_suid_obj->send_request(pb_req_msg_encoded);
}
void accel_cal::enable_accel()
{
float sample_rate = 80;
sns_client_request_msg pb_req_msg;
sns_std_sensor_config pb_stream_cfg;
string pb_stream_cfg_encoded;
pb_stream_cfg.set_sample_rate(sample_rate);
pb_stream_cfg.SerializeToString(&pb_stream_cfg_encoded);
pb_req_msg.set_msg_id(SNS_STD_SENSOR_MSGID_SNS_STD_SENSOR_CONFIG);
pb_req_msg.mutable_request()->set_payload(pb_stream_cfg_encoded);
pb_req_msg.mutable_suid()->set_suid_high(accel_suid.high);
pb_req_msg.mutable_suid()->set_suid_low(accel_suid.low);
pb_req_msg.mutable_susp_config()->set_delivery_type(
SNS_CLIENT_DELIVERY_WAKEUP);
pb_req_msg.mutable_susp_config()->set_client_proc_type(
SNS_STD_CLIENT_PROCESSOR_APSS);
string pb_req_msg_encoded;
pb_req_msg.SerializeToString(&pb_req_msg_encoded);
pb_req_msg.SerializeToString(&pb_req_msg_encoded);
ssc_accel_cal_obj->send_request(pb_req_msg_encoded);
}
void accel_cal::request_accel_cal()
{
string pb_req_msg_encoded;
string config_encoded;
sns_client_request_msg pb_req_msg;
sns_physical_sensor_test_config config;
config.set_test_type((sns_physical_sensor_test_type)accel_test_type);
config.SerializeToString(&config_encoded);
pb_req_msg.set_msg_id(SNS_PHYSICAL_SENSOR_TEST_MSGID_SNS_PHYSICAL_SENSOR_TEST_CONFIG);
pb_req_msg.mutable_request()->set_payload(config_encoded);
pb_req_msg.mutable_suid()->set_suid_high(accel_suid.high);
pb_req_msg.mutable_suid()->set_suid_low(accel_suid.low);
pb_req_msg.mutable_susp_config()->set_delivery_type(SNS_CLIENT_DELIVERY_WAKEUP);
pb_req_msg.mutable_susp_config()->
set_client_proc_type(SNS_STD_CLIENT_PROCESSOR_APSS);
pb_req_msg.SerializeToString(&pb_req_msg_encoded);
ssc_accel_cal_obj->send_request(pb_req_msg_encoded);
}
上面为三个request请求函数处理。
request_suid的msg_id为SNS_SUID_MSGID_SNS_SUID_REQ;
enable_accel的msg_id为SNS_STD_SENSOR_MSGID_SNS_STD_SENSOR_CONFIG;
request_accel_cal的msg_id为SNS_PHYSICAL_SENSOR_TEST_MSGID_SNS_PHYSICAL_SENSOR_TEST_CONFIG,test_type为SELF_TEST_TYPE_FACTORY。
void accel_cal::handle_ssc_enable_accel_event(const uint8_t *data, size_t size)
{
ALOGI("event callback start:\n");
}
void accel_cal::handle_ssc_accel_cal_event(const uint8_t *data, size_t size)
{
ALOGI("event callback start:\n");
sns_client_event_msg pb_event_msg;
FILE *file = NULL;
sns_physical_sensor_test_event test_event;
pb_event_msg.ParseFromArray(data, size);
for (int i=0; i < pb_event_msg.events_size(); i++) {
auto&& pb_event = pb_event_msg.events(i);
ALOGI("event[%d] msg_id=%d", i, pb_event.msg_id());
if (pb_event.msg_id() ==
SNS_PHYSICAL_SENSOR_TEST_MSGID_SNS_PHYSICAL_SENSOR_TEST_EVENT)
test_event.ParseFromString(pb_event.payload());
int result = test_event.test_passed();
if(result==1 && test_event.test_data().size() > 3){
file = fopen(GsensorCalibration_factory_file, "w+");
if(NULL == file)
{
ALOGI("accel fopen error \n");
accel_sensor_indication = 3;
}
else
{
fprintf(file, "%s\n",test_event.test_data().c_str());
accel_sensor_indication = 1;
}
fclose(file);
}else{
accel_sensor_indication = 2;
}
}
}
void accel_cal::handle_ssc_suid_event(const uint8_t *data, size_t size)
{
ALOGI(" event received for accel suid");
/* parse the pb encoded event */
sns_client_event_msg pb_event_msg;
pb_event_msg.ParseFromArray(data, size);
for (int i = 0; i < pb_event_msg.events_size(); i++) {
ALOGI("suid event iteration %d", i);
auto& pb_event = pb_event_msg.events(i);
if (pb_event.msg_id() != SNS_SUID_MSGID_SNS_SUID_EVENT) {
return;
}
sns_suid_event pb_suid_event;
pb_suid_event.ParseFromString(pb_event.payload());
const string& datatype = pb_suid_event.data_type();
for (int j = 0; j < pb_suid_event.suid_size(); j++) {
ALOGI("suid number %d", j);
if (datatype == ACCEL) {
accel_suid.low = pb_suid_event.suid(j).suid_low();
accel_suid.high = pb_suid_event.suid(j).suid_high();
stringstream suidLow;
suidLow << std::hex << accel_suid.low;
stringstream suidHigh;
suidHigh << std::hex << accel_suid.high;
ALOGI("even recieved for accel suid, suid = %s, %s",
suidLow.str().c_str(), suidHigh.str().c_str());
//printf("even recieved for accel suid, suid = %s, %s\n",
// suidLow.str().c_str(), suidHigh.str().c_str());
}
}
}
pthread_cond_signal(&condition);
pthread_mutex_unlock(&cb_mutex);
}
上面为callback函数:
handle_ssc_suid_event 中msg_id为SNS_SUID_MSGID_SNS_SUID_EVENT,并将suid保存到sensor_uid accel_suid数据结构中。
handle_ssc_enable_accel_event中没有做任务处理,因为我们不需要gsensor数据,只需要enable它。
handle_ssc_accel_cal_event中为gsensor calibration,msg_id为:SNS_PHYSICAL_SENSOR_TEST_MSGID_SNS_PHYSICAL_SENSOR_TEST_EVENT,该command下下去后,会在SLPI侧accel driver中进行factory calibration,然后把calibration的数据通过event传回client。
然后将calibration的数据保存在/factory/GsensorCalibration.ini中,以便调用。
除了上面的方式外,还可以在enable accel后,获取accel 数据自行进行calibration。
比如下面一段code:
void accel_cal::request_accel_cal()
{
float sample_rate = 20;
sns_client_request_msg pb_req_msg;
sns_std_sensor_config pb_stream_cfg;
string pb_stream_cfg_encoded;
pb_stream_cfg.set_sample_rate(sample_rate);
pb_stream_cfg.SerializeToString(&pb_stream_cfg_encoded);
pb_req_msg.set_msg_id(SNS_STD_SENSOR_MSGID_SNS_STD_SENSOR_CONFIG);
pb_req_msg.mutable_request()->set_payload(pb_stream_cfg_encoded);
pb_req_msg.mutable_suid()->set_suid_high(accel_suid.high);
pb_req_msg.mutable_suid()->set_suid_low(accel_suid.low);
pb_req_msg.mutable_susp_config()->set_delivery_type(
SNS_CLIENT_DELIVERY_WAKEUP);
pb_req_msg.mutable_susp_config()->set_client_proc_type(
SNS_STD_CLIENT_PROCESSOR_APSS);
string pb_req_msg_encoded;
pb_req_msg.SerializeToString(&pb_req_msg_encoded);
//setting number of samples recieved to 0, and allocate the input array
accel_sample_number = 0;
samples_for_bias_calculation = new float*[SAMPLE_COUNT_REQUIRED_FORALGO];//SAMPLE_COUNT_REQUIRED_FORALGO = 64
if(samples_for_bias_calculation == NULL){
sns_loge("Memory allocation failed for samples_for_bias_calculation");
return;
}
for (int i = 0; i < SAMPLE_COUNT_REQUIRED_FORALGO; i++) {
samples_for_bias_calculation[i] = new float[3];
}
ssc_accel_cal_obj->send_request(pb_req_msg_encoded);
}
采样64组accel data。
void accel_cal::calculate_bias(bias_output* output)
{
sns_logd("calculating bias for 64 samples");
output->motionState = 0;
float sampleSum[NUM_AXIS] = { 0 };
float sampleSqSum[NUM_AXIS] = { 0 };
float variance[NUM_AXIS] = { 0 };
for (int j = 0; j < SAMPLE_COUNT_REQUIRED_FORALGO; j++) {
for (int i = 0; i < NUM_AXIS; i++) {
sampleSum[i] += samples_for_bias_calculation[j][i];
sampleSqSum[i] += ((float) (samples_for_bias_calculation[j][i])
* (float) (samples_for_bias_calculation[j][i]));
}
}
float varT;
for (int i = 0; i < NUM_AXIS; i++) {
varT = (float) (sampleSum[i]) * (float) (sampleSum[i]);
variance[i] = (sampleSqSum[i] - (varT / (float) SAMPLE_COUNT_REQUIRED_FORALGO)) / (float) SAMPLE_COUNT_REQUIRED_FORALGO;
if (variance[i] > variance_threshold) {
output->motionState = 0;
return;
} else if (0 == variance[i]) {
output->motionState = 0;
return;
} else if ( FX_ABS(sampleSum[i] / SAMPLE_COUNT_REQUIRED_FORALGO) > bias_thresholds[i]) {
output->motionState = 0;
return;
}
}
output->motionState = 1;
output->x = sampleSum[0] / SAMPLE_COUNT_REQUIRED_FORALGO;
output->y = sampleSum[1] / SAMPLE_COUNT_REQUIRED_FORALGO;
output->z = sampleSum[2] / SAMPLE_COUNT_REQUIRED_FORALGO;
sns_logd("bias successfully calculated for 64 samples");
}
void accel_cal::handle_ssc_accel_cal_event(const uint8_t *data, size_t size)
{
sns_logd("event received for accel config");
sns_client_event_msg pb_event_msg;
pb_event_msg.ParseFromArray(data, size);
int eventSize = pb_event_msg.events_size();
for (int i = 0; i < eventSize; i++) {
auto&& pb_event = pb_event_msg.events(i);
if (pb_event.msg_id() == SNS_STD_SENSOR_MSGID_SNS_STD_SENSOR_EVENT) {
sns_std_sensor_event pb_sensor_event;
pb_sensor_event.ParseFromString(pb_event.payload());
float x = pb_sensor_event.data(0);
float y = pb_sensor_event.data(1);
float z = pb_sensor_event.data(2);
sns_logd("accel data received from event ::: x=%f, y=%f, z=%f", x,y, z);
sample_cal.x = x;
sample_cal.y = y;
sample_cal.z = z;
sample_calculated_offset.x = 0;
sample_calculated_offset.y = 0;
sample_calculated_offset.z = 0;
...
samples_for_bias_calculation[accel_sample_number][0] = x;
samples_for_bias_calculation[accel_sample_number][1] = y;
samples_for_bias_calculation[accel_sample_number][2] = z;
if (accel_sample_number == SAMPLE_COUNT_REQUIRED_FORALGO - 1) {
bias_output output;
calculate_bias(&output); //对64组accel data进行calibration。
if (output.motionState == 0) {
sns_logd("Motion detected.");
} else {
sns_logd("Device at rest");
sns_logd("calculated cal values: %f, %f, %f", output.x,output.y, output.z);
curr_cal.x = output.x;
curr_cal.y = output.y;
curr_cal.z = output.z;
}
}
accel_sample_number = (accel_sample_number + 1) % 64;
}
}
}
上面通过event获取accel sample ,当收集64笔时进行calibration。并将calibration的数据输出。
通过上面的操作也可以完成gsensor的calibration。不过算法要自己设计。
Ok,accel的calibration的操作已经完成。