一、知识点
(一)导数定义
- 定义
设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的某个邻域内有定义,当自变量 x x x 在 x 0 x_0 x0 处取得增量 Δ x \Delta x Δx(点 x 0 + Δ x x_0+\Delta x x0+Δx 仍在该邻域内)时,相应的函数取得增量 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)−f(x0);如果当 Δ x → 0 \Delta x\rightarrow 0 Δx→0 时 Δ y \Delta y Δy 与 Δ x \Delta x Δx 之比的极限存在,则称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 处可导,并称这个极限为函数 y = f ( x ) y=f(x) y=f(x) 在 x 0 x_0 x0 处的导数,记为 f ′ ( x 0 ) f'(x_0) f′(x0),即 f ′ ( x 0 ) = lim Δ x → 0 Δ y Δ x = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\lim_{\Delta x\rightarrow 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f′(x0)=limΔx→0ΔxΔy=limΔx→0Δxf(x0+Δx)−f(x0),也可记作 y ′ ∣ x = x 0 y'|_{x=x_0} y′∣x=x0, d y d x ∣ x = x 0 \frac{dy}{dx}|_{x=x_0} dxdy∣x=x0 或 d f ( x ) d x ∣ x = x 0 \frac{df(x)}{dx}|_{x=x_0} dxdf(x)∣x=x0. - 单侧导数
f ′ ( x ) f'(x) f′(x) 存在即 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处可导的充分必要条件是左极限 lim h → 0 − f ( x 0 + h ) − f ( x 0 ) h \lim_{h\rightarrow 0^-}\frac{f(x_0+h)-f(x_0)}{h} limh→0−hf(x0+h)−f(x0) 及 右极限 lim h → 0 + f ( x 0 + h ) − f ( x 0 ) h \lim_{h\rightarrow 0^+}\frac{f(x_0+h)-f(x_0)}{h} limh→0+hf(x0+h)−f(x0) 都存在且相等. 这两个极限分别成为函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处的左导数和右导数,记作 f − ′ ( x 0 ) f'_-(x_0) f−′(x0) 及 f + ′ ( x 0 ) f'_+(x_0) f+′(x0).
左导数和右导数统称为单侧导数.
(二)函数可导性与连续性的关系
- 函数在某点连续是函数在该点可导的必要条件,但不是充分条件。即:“可导”一定“连续”,但“连续”未必“可导”.
二、练习题
- 设物体绕定轴旋转,在时间间隔 [ 0 , t ] [0,t] [0,t] 内转过角度 θ \theta θ,从而转角 θ \theta θ 是 t t t 的函数: θ = θ ( t ) \theta=\theta(t) θ=θ(t). 如果旋转是匀速的,那么称 ω = θ t \omega = \frac{\theta}{t} ω=tθ 为物体旋转的角速度.如果旋转是非匀速的,应怎样确定该物体在时刻 t 0 t_0 t0 的角速度?
- 解答:
ω t 0 = lim Δ t → 0 θ ( t 0 + Δ t ) − θ ( t 0 ) Δ t = θ ′ ( t 0 ) \omega _{t_0}=\lim_{\Delta t\rightarrow 0}\frac{\theta (t_0+\Delta t)-\theta(t_0)}{\Delta t}=\theta '(t_0) ωt0=limΔt→0Δtθ(t0+Δt)−θ(t0)=θ′(t0)
- 当物体的温度高于周围介质的温度时,物体就不断冷却. 若物体的温度 T T T 与时间 t t t 的函数关系为 T = T ( t ) T=T(t) T=T(t),应怎样确定该物体在时刻 t t t 的冷却速度?
- 解答:
V t = lim Δ t → 0 T ( t ) − T ( t + Δ t ) Δ t = − T ′ ( t ) V_t=\lim_{\Delta t\rightarrow 0}\frac{T(t)-T(t+\Delta t)}{\Delta t}=-T'(t) Vt=limΔt→0ΔtT(t)−T(t+Δt)=−T′(t)
- 设某工厂生产
x
x
x 件产品的成本为
C
(
x
)
=
2000
+
100
x
−
0.1
x
2
C(x)=2000+100x-0.1x^2
C(x)=2000+100x−0.1x2(元), 这函数
C
(
x
)
C(x)
C(x) 称为成本函数,成本函数
C
(
x
)
C(x)
C(x) 的导数
C
′
(
x
)
C'(x)
C′(x) 在经济学中称为边际成本. 试求
(1) 当生产100件产品时的边际成本;
(2) 生产第101件产品的成本,并与(1)中求得的边际成本作比较,说明边际成本的实际意义.
- 解答:
- (1)
C ′ ( x ) = 100 − 0.2 x C'(x)=100-0.2x C′(x)=100−0.2x(元)
C ′ ( 100 ) = 100 − 0.2 ⋅ 100 = 80 C'(100)=100-0.2\cdot 100=80 C′(100)=100−0.2⋅100=80(元) - (2)
C ( 101 ) = 2000 + 100 ⋅ 101 − 0.1 ⋅ 10 1 2 = 11079.9 C(101)=2000+100\cdot 101 -0.1\cdot 101^2=11079.9 C(101)=2000+100⋅101−0.1⋅1012=11079.9(元)
C ( 100 ) = 2000 + 100 ⋅ 100 − 0.1 ⋅ 10 0 2 = 11000 C(100)=2000+100\cdot 100-0.1\cdot 100^2=11000 C(100)=2000+100⋅100−0.1⋅1002=11000(元)
C ( 100 ) − C ( 100 ) = 11079.9 − 11000 = 79.9 ≈ 80 C(100)-C(100)=11079.9-11000=79.9\approx 80 C(100)−C(100)=11079.9−11000=79.9≈80(元)
边际成本的意义:当生产到 x x x 件产品时,边际成本与再生产一件产品的成本相当.
- 设 f ( x ) = 10 x 2 f(x)=10x^2 f(x)=10x2,试按定义求 f ′ ( − 1 ) f'(-1) f′(−1).
- 解答:
f ′ ( − 1 ) f'(-1) f′(−1)
= lim Δ x → 0 f ( − 1 + Δ x ) − f ( − 1 ) Δ x =\lim_{\Delta x\rightarrow 0}\frac{f(-1+\Delta x)-f(-1)}{\Delta x} =limΔx→0Δxf(−1+Δx)−f(−1)
= lim Δ x → 0 10 ⋅ ( Δ x − 1 ) 2 − 10 ⋅ ( − 1 ) 2 Δ x =\lim_{\Delta x\rightarrow 0}\frac{10\cdot (\Delta x-1)^2-10\cdot (-1)^2}{\Delta x} =limΔx→0Δx10⋅(Δx−1)2−10⋅(−1)2
= lim Δ x → 0 ( 10 ⋅ Δ x − 20 ) =\lim_{\Delta x\rightarrow 0}(10\cdot \Delta x-20) =limΔx→0(10⋅Δx−20)
= − 20 =-20 =−20
- 证明 ( c o s x ) ′ = − s i n x (cosx)'=-sinx (cosx)′=−sinx.
- 证明:
( c o s x ) ′ (cosx)' (cosx)′
= lim h → 0 c o s ( x + h ) − c o s x h =\lim_{h\rightarrow 0}\frac{cos(x+h)-cosx}{h} =limh→0hcos(x+h)−cosx
= lim h → 0 − 2 s i n 2 x + h 2 s i n h 2 h =\lim_{h\rightarrow 0}\frac{-2sin \frac{2x+h}{2}sin \frac{h}{2}}{h} =limh→0h−2sin22x+hsin2h
= − lim h → 0 s i n 2 x + h 2 s i n h 2 h 2 =-\lim_{h\rightarrow 0}sin\frac{2x+h}{2}\frac{sin\frac{h}{2}}{\frac{h}{2}} =−limh→0sin22x+h2hsin2h
= − lim h → 0 s i n 2 x + h 2 =-\lim_{h\rightarrow 0}sin\frac{2x+h}{2} =−limh→0sin22x+h
= − s i n x =-sinx =−sinx
- 下列各题中均假定
f
′
(
x
0
)
f'(x_0)
f′(x0) 存在,按照导数定义观察下列极限,指出
A
A
A 表示什么:
(1) lim Δ x → 0 f ( x 0 − Δ x ) − f ( x 0 ) Δ x = A \lim_{\Delta x\rightarrow 0}\frac{f(x_0-\Delta x)-f(x_0)}{\Delta x}=A limΔx→0Δxf(x0−Δx)−f(x0)=A
(2) lim x → 0 f ( x ) x = A \lim_{x\rightarrow 0}\frac{f(x)}{x}=A limx→0xf(x)=A,其中 f ( 0 ) = 0 f(0)=0 f(0)=0 且 f ′ ( 0 ) f'(0) f′(0) 存在
(3) lim h → 0 f ( x 0 + h ) − f ( x 0 − h ) h = A \lim_{h\rightarrow 0}\frac{f(x_0+h)-f(x_0-h)}{h}=A limh→0hf(x0+h)−f(x0−h)=A
- 解答:
- (1)
令 h = − Δ x h=-\Delta x h=−Δx,则原式变换为:
lim h → 0 f ( x 0 + h ) − f ( x 0 ) − h = − A \lim_{h\rightarrow 0}\frac{f(x_0+h)-f(x_0)}{-h}=-A limh→0−hf(x0+h)−f(x0)=−A
∴ A \therefore A ∴A 表示 − f ′ ( x 0 ) -f'(x_0) −f′(x0). - (2)
原式可以变换为:
lim x → 0 f ( 0 + x ) − f ( 0 ) x = f ′ ( 0 ) = A \lim_{x\rightarrow 0}\frac{f(0+x)-f(0)}{x}=f'(0)=A limx→0xf(0+x)−f(0)=f′(0)=A
∴ A \therefore A ∴A 表示 f ′ ( 0 ) f'(0) f′(0). - (3)
lim h → 0 f ( x 0 + h ) − f ( x 0 − h ) h \lim_{h\rightarrow 0}\frac{f(x_0+h)-f(x_0-h)}{h} limh→0hf(x0+h)−f(x0−h)
= lim h → 0 f ( x 0 + h ) − f ( x 0 ) + f ( x 0 ) − f ( x 0 − h ) h =\lim_{h\rightarrow 0}\frac{f(x_0+h)-f(x_0)+f(x_0)-f(x_0-h)}{h} =limh→0hf(x0+h)−f(x0)+f(x0)−f(x0−h)
= lim h → 0 f ( x 0 + h ) − f ( x 0 ) h + lim h → 0 f ( x 0 ) − f ( x 0 − h ) h =\lim_{h\rightarrow 0}\frac{f(x_0+h)-f(x_0)}{h}+\lim_{h\rightarrow 0}\frac{f(x_0)-f(x_0-h)}{h} =limh→0hf(x0+h)−f(x0)+limh→0hf(x0)−f(x0−h)
= 2 f ′ ( x 0 ) = A =2f'(x_0)=A =2f′(x0)=A
∴ A \therefore A ∴A 表示 2 f ′ ( x 0 ) 2f'(x_0) 2f′(x0).
- 设
f
(
x
)
=
{
2
3
x
3
,
x
≤
1
x
2
,
x
>
1
f(x)=\begin{cases}\frac{2}{3}x^3,&x\leq 1\\x^2,&x>1\end{cases}
f(x)={32x3,x2,x≤1x>1,则
f
(
x
)
f(x)
f(x) 在
x
=
1
x=1
x=1 处的( ).
(A) 左、右导数都存在
(B) 左导数存在,右导数不存在
© 左导数不存在,右导数不存在
(D) 左、右导数都不存在
- 解答:
- 左导数:
f − ′ ( 1 ) = lim x → 1 − f ( x ) − f ( 1 ) x − 1 f_-'(1)=\lim_{x\rightarrow 1^-}\frac{f(x)-f(1)}{x-1} f−′(1)=limx→1−x−1f(x)−f(1)
= lim x → 1 − 2 3 x 3 − 2 3 x − 1 =\lim_{x\rightarrow 1^-}\frac{\frac{2}{3}x^3-\frac{2}{3}}{x-1} =limx→1−x−132x3−32
= 2 3 lim x → 1 − x 3 − 1 x − 1 =\frac{2}{3}\lim_{x\rightarrow 1^-}\frac{x^3-1}{x-1} =32limx→1−x−1x3−1
= 2 3 lim x → 1 − ( x 2 + x + 1 ) =\frac{2}{3}\lim_{x\rightarrow 1^-}(x^2+x+1) =32limx→1−(x2+x+1)
= 2 =2 =2 - 右导数:
f + ′ ( 1 ) = lim x → 1 + f ( x ) − f ( 1 ) x − 1 f'_+(1)=\lim_{x\rightarrow 1^+}\frac{f(x)-f(1)}{x-1} f+′(1)=limx→1+x−1f(x)−f(1)
= lim x → 1 + x 2 − 2 3 x − 1 =\lim_{x\rightarrow 1^+}\frac{x^2-\frac{2}{3}}{x-1} =limx→1+x−1x2−32
= ∞ =\infty =∞(极限不存在) - ∴ f ( x ) \therefore f(x) ∴f(x) 在 x = 1 x=1 x=1 处的左导数存在,右导数不存在,选择 B B B.
- 设
f
(
x
)
f(x)
f(x) 可导,
F
(
x
)
=
f
(
x
)
(
1
+
∣
s
i
n
x
∣
)
F(x)=f(x)(1+|sinx|)
F(x)=f(x)(1+∣sinx∣),则
f
(
0
)
=
0
f(0)=0
f(0)=0 是
F
(
x
)
F(x)
F(x) 在
x
=
0
x=0
x=0 处可导的( ).
(A) 充分必要条件
(B) 充分条件但非必要条件
© 必要条件但非充分条件
(D) 既非充分条件又非必要条件
-
解答:
∵ F ( x ) \because F(x) ∵F(x) 在 x = 0 x=0 x=0 处可导.
∴ F − ′ ( 0 ) = F + ′ ( 0 ) \therefore F'_-(0)=F'_+(0) ∴F−′(0)=F+′(0)
F − ′ ( 0 ) = lim x → 0 − F ( x ) − F ( 0 ) x − 0 F'_-(0)=\lim_{x\rightarrow 0^-}\frac{F(x)-F(0)}{x-0} F−′(0)=limx→0−x−0F(x)−F(0)
= lim x → 0 − f ( x ) ( 1 + ∣ s i n x ∣ ) − f ( 0 ) x =\lim_{x\rightarrow 0^-}\frac{f(x)(1+|sinx|)-f(0)}{x} =limx→0−xf(x)(1+∣sinx∣)−f(0)
= lim x → 0 − f ( x ) − f ( x ) s i n x − f ( 0 ) x =\lim_{x\rightarrow 0^-}\frac{f(x)-f(x)sinx-f(0)}{x} =limx→0−xf(x)−f(x)sinx−f(0)
= lim x → 0 − f ( x ) − f ( 0 ) x − lim x → 0 − f ( x ) s i n x x =\lim_{x\rightarrow 0^-}\frac{f(x)-f(0)}{x}-\lim_{x\rightarrow 0^-}\frac{f(x)sinx}{x} =limx→0−xf(x)−f(0)−limx→0−xf(x)sinx
= f − ′ ( 0 ) − f ( 0 ) =f'_-(0)-f(0) =f−′(0)−f(0)
同理 F + ′ ( 0 ) = f ′ ( 0 ) + f ( 0 ) F'_+(0)=f'(0)+f(0) F+′(0)=f′(0)+f(0)
∴ f − ′ ( 0 ) − f ( 0 ) = f + ′ ( 0 ) + f ( 0 ) \therefore f'_-(0)-f(0)=f'_+(0)+f(0) ∴f−′(0)−f(0)=f+′(0)+f(0)
∵ f ( x ) \because f(x) ∵f(x) 可导
∴ f − ′ ( 0 ) = f + ′ ( 0 ) \therefore f'_-(0)=f'_+(0) ∴f−′(0)=f+′(0)
∴ f ( 0 ) = 0 \therefore f(0)=0 ∴f(0)=0
∴ f ( 0 ) = 0 \therefore f(0)=0 ∴f(0)=0 是 F ( 0 ) F(0) F(0) 在 x = 0 x=0 x=0 处可导的必要条件.
∵ f ( 0 ) = 0 \because f(0)=0 ∵f(0)=0
∴ F − ′ ( 0 ) = lim x → 0 − F ( x ) − F ( 0 ) x − 0 \therefore F'_-(0)=\lim_{x\rightarrow 0^-}\frac{F(x)-F(0)}{x-0} ∴F−′(0)=limx→0−x−0F(x)−F(0)
= lim x → 0 − f ( x ) ( 1 − s i n x ) x = 1 =\lim_{x\rightarrow 0^-}\frac{f(x)(1-sinx)}{x}=1 =limx→0−xf(x)(1−sinx)=1
F + ′ ( 0 ) = lim x → 0 + F ( x ) − F ( 0 ) x − 0 F'_+(0)=\lim_{x\rightarrow 0^+}\frac{F(x)-F(0)}{x-0} F+′(0)=limx→0+x−0F(x)−F(0)
= lim x → 0 + f ( x ) ( 1 + s i n x ) x = 1 =\lim_{x\rightarrow 0^+}\frac{f(x)(1+sinx)}{x}=1 =limx→0+xf(x)(1+sinx)=1
∴ F − ′ ( 0 ) = F + ′ ( 0 ) \therefore F'_-(0)=F'_+(0) ∴F−′(0)=F+′(0)
∴ F ( x ) \therefore F(x) ∴F(x) 在 x = 0 x=0 x=0 处可导
∴ f ( 0 ) = 0 \therefore f(0)=0 ∴f(0)=0 是 F ( x ) F(x) F(x) 在 x = 0 x=0 x=0 处可导的充分条件.
∴ \therefore ∴ 选择 A A A.
- 求下列函数的导数:
(1) y = x 4 y=x^4 y=x4
(2) y = x 2 3 y=\sqrt[3]{x^2} y=3x2
(3) y = x 1.6 y=x^{1.6} y=x1.6
(4) y = 1 x y=\frac{1}{\sqrt{x}} y=x1
(5) y = 1 x 2 y=\frac{1}{x^2} y=x21
(6) y = x 3 x 5 y=x^3\sqrt[5]{x} y=x35x
(7) y = x 2 x 2 3 x 5 y=\frac{x^2\sqrt[3]{x^2}}{\sqrt{x^5}} y=x5x23x2
- 解答:
(1) y ′ = 4 x 3 y'=4x^3 y′=4x3
(2) y ′ = 2 3 x − 1 3 y'=\frac{2}{3}x^{-\frac{1}{3}} y′=32x−31
(3) y ′ = 1.6 x 0.6 y'=1.6x^{0.6} y′=1.6x0.6
(4) y ′ = − 1 2 x − 3 2 y'=-\frac{1}{2}x^{-\frac{3}{2}} y′=−21x−23
(5) y ′ = − 2 x − 3 y'=-2x^{-3} y′=−2x−3
(6) y ′ = 16 5 x 11 5 y'=\frac{16}{5}x^{\frac{11}{5}} y′=516x511
(7) y ′ = ( x 2 ⋅ x 2 3 ⋅ x − 5 2 ) ′ = 1 6 x − 5 6 y'=(x^2\cdot x^{\frac{2}{3}}\cdot x^{-\frac{5}{2}})'=\frac{1}{6}x^{-\frac{5}{6}} y′=(x2⋅x32⋅x−25)′=61x−65
- 已知物体的运动规律为 s = t 3 ( m ) s=t^3(m) s=t3(m),求这物体在 t = 2 ( s ) t=2(s) t=2(s) 时的速度.
- 解答:
物体在 t t t 时刻的速度为: v = s ′ = 3 t 2 ( m / s ) v=s'=3t^2(m/s) v=s′=3t2(m/s)
∴ t = 2 ( s ) \therefore t=2(s) ∴t=2(s) 时, v = 12 ( m / s ) v=12(m/s) v=12(m/s).
- 如果 f ( x ) f(x) f(x) 为偶函数,且 f ′ ( 0 ) f'(0) f′(0) 存在,证明 f ′ ( 0 ) = 0 f'(0)=0 f′(0)=0.
- 解答:
根据导数定义
f ′ ( 0 ) = lim x → 0 f ( x ) − f ( 0 ) x − 0 = lim x → 0 f ( − x ) − f ( 0 ) x f'(0)=\lim_{x\rightarrow 0}\frac{f(x)-f(0)}{x-0}=\lim_{x\rightarrow 0}\frac{f(-x)-f(0)}{x} f′(0)=limx→0x−0f(x)−f(0)=limx→0xf(−x)−f(0)
取 t = − x t=-x t=−x
上式 = lim t → 0 f ( t ) − f ( 0 ) − t = − lim t → 0 f ( t ) − f ( 0 ) t = − f ′ ( 0 ) =\lim_{t\rightarrow 0}\frac{f(t)-f(0)}{-t}=-\lim_{t\rightarrow 0}\frac{f(t)-f(0)}{t}=-f'(0) =limt→0−tf(t)−f(0)=−limt→0tf(t)−f(0)=−f′(0)
∴ f ′ ( 0 ) = − f ′ ( 0 ) \therefore f'(0)=-f'(0) ∴f′(0)=−f′(0)
∴ f ′ ( 0 ) = 0 \therefore f'(0)=0 ∴f′(0)=0.
- 求曲线 y = s i n x y=sinx y=sinx 在具有下列横坐标的各点处切线的斜率:(1) x = 2 3 π x=\frac{2}{3}\pi x=32π;(2) x = π x=\pi x=π.
- 解答:
∵ y ′ = ( s i n x ) ′ = c o s x \because y'=(sinx)'=cosx ∵y′=(sinx)′=cosx
∴ y ′ ∣ x = 2 3 π = c o s 2 3 π = − 1 2 \therefore y'|_{x=\frac{2}{3}\pi}=cos\frac{2}{3}\pi=-\frac{1}{2} ∴y′∣x=32π=cos32π=−21
y ′ ∣ x = π = c o s π = − 1 y'|_{x=\pi}=cos\pi=-1 y′∣x=π=cosπ=−1
∴ y = s i n x \therefore y=sinx ∴y=sinx 在 x = 2 3 π x=\frac{2}{3}\pi x=32π 及 x = π x=\pi x=π 处的斜率分别为 − 1 2 -\frac{1}{2} −21 和 − 1 -1 −1.
- 求曲线 y = c o s x y=cosx y=cosx 上点 ( π 3 , 1 2 ) (\frac{\pi}{3}, \frac{1}{2}) (3π,21) 处的切线方程和法线方程.
- 解答:
y ′ = ( c o s x ) ′ = − s i n x y'=(cosx)'=-sinx y′=(cosx)′=−sinx
曲线 y = c o s x y=cosx y=cosx 在点 ( π 3 , 1 2 ) (\frac{\pi}{3},\frac{1}{2}) (3π,21) 处的切线的斜率是 y ′ ∣ x = π 3 = − s i n ( π 3 ) = − 3 2 y'|_{x=\frac{\pi}{3}}=-sin(\frac{\pi}{3})=-\frac{\sqrt{3}}{2} y′∣x=3π=−sin(3π)=−23,切线的方程是 y − 1 2 = − 3 2 ( x − π 3 ) y-\frac{1}{2}=-\frac{\sqrt{3}}{2}(x-\frac{\pi}{3}) y−21=−23(x−3π)
法线的斜率是 2 3 3 \frac{2\sqrt{3}}{3} 323,法线的方程是 y − 1 2 = 2 3 3 ( x − π 3 ) y-\frac{1}{2}=\frac{2\sqrt{3}}{3}(x-\frac{\pi}{3}) y−21=323(x−3π).
- 求曲线 y = e x y=e^x y=ex 在点 ( 0 , 1 ) (0,1) (0,1) 处的切线方程.
- 解答:
y ′ = ( e x ) ′ = e x y'=(e^x)'=e^x y′=(ex)′=ex
曲线 y = e x y=e^x y=ex 在点 ( 0 , 1 ) (0,1) (0,1) 处切线的斜率为 y ′ ∣ x = 0 = e 0 = 1 y'|_{x=0}=e^0=1 y′∣x=0=e0=1,切线方程为 y − 1 = x y-1=x y−1=x,即 y = x + 1 y=x+1 y=x+1.
- 在抛物线 y = x 2 y=x^2 y=x2 上取横坐标为 x 1 = 1 x_1=1 x1=1 及 x 2 = 3 x_2=3 x2=3 的两点,作过这两点的割线. 问该抛物线上哪一点的切线平行于这条割线?
-
解答:
x 1 = 1 x_1=1 x1=1 时, y 1 = 1 y_1=1 y1=1
x 2 = 3 x_2=3 x2=3 时, y 2 = 9 y_2=9 y2=9
过这两点的割线的斜率为 9 − 1 3 − 1 = 4 \frac{9-1}{3-1}=4 3−19−1=4y ′ = ( x 2 ) ′ = 2 x y'=(x^2)'=2x y′=(x2)′=2x
y ′ = 4 y'=4 y′=4 时 x = 2 x=2 x=2, y = 4 y=4 y=4
即抛物线上的点 ( 2 , 4 ) (2,4) (2,4) 的切线平行于这条割线.
- 讨论下列函数在
x
=
0
x=0
x=0 处的连续性与可导性:
(1) y = ∣ s i n x ∣ y=|sinx| y=∣sinx∣
(2) y = { x 2 s i n 1 x , x ≠ 0 0 , x = 0 y=\begin{cases}x^2sin\frac{1}{x},&x\neq 0\\0,&x=0\end{cases} y={x2sinx1,0,x=0x=0
-
解答:
-
(1)
∵ lim x → 0 ∣ s i n x ∣ = 0 \because \lim_{x\rightarrow 0}|sinx|=0 ∵limx→0∣sinx∣=0
∴ y = ∣ s i n x ∣ \therefore y=|sinx| ∴y=∣sinx∣ 在 x = 0 x=0 x=0 处连续
y − ′ ( 0 ) = lim x → 0 − ∣ s i n x ∣ − ∣ s i n 0 ∣ x − 0 = lim x → 0 − − s i n x x = − 1 y_-'(0)=\lim_{x\rightarrow 0^-}\frac{|sinx|-|sin0|}{x-0}=\lim_{x\rightarrow 0^-}\frac{-sinx}{x}=-1 y−′(0)=limx→0−x−0∣sinx∣−∣sin0∣=limx→0−x−sinx=−1
y + ′ ( 0 ) = lim x → 0 + ∣ s i n x ∣ − ∣ s i n 0 ∣ x − 0 = lim x → 0 + s i n x x = 1 y_+'(0)=\lim_{x\rightarrow 0^+}\frac{|sinx|-|sin0|}{x-0}=\lim_{x\rightarrow 0^+}\frac{sinx}{x}=1 y+′(0)=limx→0+x−0∣sinx∣−∣sin0∣=limx→0+xsinx=1
∴ y − ′ ( 0 ) ≠ y + ′ ( 0 ) \therefore y_-'(0)\neq y_+'(0) ∴y−′(0)=y+′(0)
∴ y = ∣ s i n x ∣ \therefore y=|sinx| ∴y=∣sinx∣ 在 x = 0 x=0 x=0 处不可导. -
(2)
∵ lim x → 0 ( x 2 s i n 1 x ) = lim x → 0 x ⋅ s i n 1 x 1 x = lim x → 0 x = 0 = f ( 0 ) \because \lim_{x\rightarrow 0}(x^2sin\frac{1}{x})=\lim_{x\rightarrow 0}x\cdot \frac{sin\frac{1}{x}}{\frac{1}{x}}=\lim_{x\rightarrow 0}x=0=f(0) ∵limx→0(x2sinx1)=limx→0x⋅x1sinx1=limx→0x=0=f(0)
∴ y \therefore y ∴y 在 x = 0 x=0 x=0 处连续.y ′ ( 0 ) = lim x → 0 x 2 s i n 1 x − 0 x − 0 = lim x → 0 x s i n 1 x = 0 y'(0)=\lim_{x\rightarrow 0}\frac{x^2sin\frac{1}{x}-0}{x-0}=\lim_{x\rightarrow 0}xsin\frac{1}{x}=0 y′(0)=limx→0x−0x2sinx1−0=limx→0xsinx1=0
∴ \therefore ∴ 函数在 x = 0 x=0 x=0 处可导.
- 设函数 f ( x ) = { x 2 , x ≤ 1 a x + b , x > 1 f(x)=\begin{cases}x^2,&x\leq 1\\ax+b,&x>1\end{cases} f(x)={x2,ax+b,x≤1x>1,为了使函数 f ( x ) f(x) f(x) 在 x = 1 x=1 x=1 处连续且可导, a , b a,b a,b 应取什么值?
-
解答:
使 f ( x ) f(x) f(x) 在 x = 1 x=1 x=1 处连续的条件是 lim x → 1 f ( x ) = f ( 1 ) \lim_{x\rightarrow 1}f(x)=f(1) limx→1f(x)=f(1)
即 lim x → 1 ( a x + b ) = x 2 ∣ x = 1 = 1 \lim_{x\rightarrow 1}(ax+b)=x^2|_{x=1}=1 limx→1(ax+b)=x2∣x=1=1
可得到 a + b = 1 a+b=1 a+b=1
使 f ( x ) f(x) f(x) 在 x = 1 x=1 x=1 处可导的条件是, f − ′ ( 1 ) = f + ′ ( 1 ) f'_-(1)=f'_+(1) f−′(1)=f+′(1)
f − ′ ( 1 ) f_-'(1) f−′(1)
= lim x → 1 − f ( x ) − f ( 1 ) x − 1 =\lim_{x\rightarrow 1^-}\frac{f(x)-f(1)}{x-1} =limx→1−x−1f(x)−f(1)
= lim x → 1 − x 2 − 1 x − 1 =\lim_{x\rightarrow 1^-}\frac{x^2-1}{x-1} =limx→1−x−1x2−1
= lim x → 1 − ( x + 1 ) = 2 =\lim_{x\rightarrow 1^-}(x+1)=2 =limx→1−(x+1)=2
f + ′ ( 1 ) f_+'(1) f+′(1)
= lim x → 1 + f ( x ) − f ( 1 ) x − 1 =\lim_{x\rightarrow 1^+}\frac{f(x)-f(1)}{x-1} =limx→1+x−1f(x)−f(1)
= lim x → 1 + a x + b − 1 x − 1 =\lim_{x\rightarrow 1^+}\frac{ax+b-1}{x-1} =limx→1+x−1ax+b−1
= lim x → 1 + ( a + a + b − 1 x − 1 ) =\lim_{x\rightarrow 1^+}(a+\frac{a+b-1}{x-1}) =limx→1+(a+x−1a+b−1)∵ lim x → 1 + ( a + a + b − 1 x − 1 ) = 2 \because \lim_{x\rightarrow 1^+}(a+\frac{a+b-1}{x-1})=2 ∵limx→1+(a+x−1a+b−1)=2
∴ a = 2 \therefore a=2 ∴a=2 且 a + b − 1 = 0 a+b-1=0 a+b−1=0
∴ b = − 1 \therefore b=-1 ∴b=−1
- 已知 f ( x ) = { x 2 , x ≥ 0 − x , x < 0 f(x)=\begin{cases}x^2,&x\geq 0\\-x,&x<0\end{cases} f(x)={x2,−x,x≥0x<0,求 f + ′ ( 0 ) f'_+(0) f+′(0), f − ′ ( 0 ) f'_-(0) f−′(0) ,又 f ′ ( 0 ) f'(0) f′(0) 是否存在?
-
解答:
f + ′ ( 0 ) = lim x → 0 + f ( x ) − f ( 0 ) x − 0 f_+'(0)=\lim_{x\rightarrow 0^+}\frac{f(x)-f(0)}{x-0} f+′(0)=limx→0+x−0f(x)−f(0)
= lim x → 0 + x 2 − 0 x =\lim_{x\rightarrow 0^+}\frac{x^2-0}{x} =limx→0+xx2−0
= lim x → 0 + x = 0 =\lim_{x\rightarrow 0^+}x=0 =limx→0+x=0f − ′ ( 0 ) = lim x → 0 − f ( x ) − f ( 0 ) x − 0 f_-'(0)=\lim_{x\rightarrow 0^-}\frac{f(x)-f(0)}{x-0} f−′(0)=limx→0−x−0f(x)−f(0)
= lim x → x − − x − 0 x = − 1 =\lim_{x\rightarrow x^-}\frac{-x-0}{x}=-1 =limx→x−x−x−0=−1∵ f − ′ ( 0 ) ≠ f + ′ ( 0 ) \because f'_-(0)\neq f'_+(0) ∵f−′(0)=f+′(0)
∴ f ′ ( 0 ) \therefore f'(0) ∴f′(0) 不存在.
- 已知 f ( x ) = { s i n x . x < 0 x , x ≥ 0 f(x)=\begin{cases}sinx.&x<0\\x,&x\geq 0\end{cases} f(x)={sinx.x,x<0x≥0,求 f ′ ( x ) f'(x) f′(x).
-
解答:
-
(1) 求分界点左侧 ( x < 0 ) (x<0) (x<0) 的导数
f ′ ( x ) = ( s i n x ) ′ = c o s x f'(x)=(sinx)'=cosx f′(x)=(sinx)′=cosx -
(2) 求分界点右侧 ( x > 0 ) (x>0) (x>0) 的导数
f ′ ( x ) = x ′ = 1 f'(x)=x'=1 f′(x)=x′=1 -
(3) 求分界点处 x = 0 x=0 x=0 处的导数
f − ′ ( 0 ) = lim x → 0 − f ( x ) − f ( 0 ) x − 0 f'_-(0)=\lim_{x\rightarrow 0^-}\frac{f(x)-f(0)}{x-0} f−′(0)=limx→0−x−0f(x)−f(0)
= lim x → 0 − s i n x − 0 x = 1 =\lim_{x\rightarrow 0^-}\frac{sinx-0}{x}=1 =limx→0−xsinx−0=1
f + ′ ( 0 ) = lim x → 0 + f ( x ) − f ( 0 ) x − 0 f'_+(0)=\lim_{x\rightarrow 0^+}\frac{f(x)-f(0)}{x-0} f+′(0)=limx→0+x−0f(x)−f(0)
= lim x → 0 + x − 0 x = 1 =\lim_{x\rightarrow 0^+}\frac{x-0}{x}=1 =limx→0+xx−0=1 -
∴ f ′ ( x ) = { c o s x , x < 0 1 , x ≥ 0 \therefore f'(x)=\begin{cases}cosx,&x<0\\1,&x\geq 0\end{cases} ∴f′(x)={cosx,1,x<0x≥0
- 证明:双曲线 x y = a 2 xy=a^2 xy=a2 上任一点处的切线与两坐标轴构成的三角形的面积等于 2 a 2 2a^2 2a2.
- 证明:
设双曲线上一点 A A A 的坐标为 ( x 0 , y 0 ) (x_0,y_0) (x0,y0).
过 A A A 点切线的斜率为 y ′ ∣ x = x 0 = ( a 2 x ) ′ ∣ x = x 0 = − a 2 x 0 2 y'|_{x=x_0}=(\frac{a^2}{x})'|_{x=x_0}=-\frac{a^2}{x_0^2} y′∣x=x0=(xa2)′∣x=x0=−x02a2
过 A A A 点切线的方程为 y − y 0 = − a 2 x 0 2 ( x − x 0 ) y-y_0=-\frac{a^2}{x_0^2}(x-x_0) y−y0=−x02a2(x−x0)
过 A A A 点切线与 X X X 轴的交点横坐标为 x = 2 x 0 x=2x_0 x=2x0
过 A A A 点切线与 Y Y Y 轴的交点纵坐标为 y = 2 a 2 x 0 y=\frac{2a^2}{x_0} y=x02a2
则题中所求三角形的面积等于 S = 1 2 ⋅ ∣ 2 ⋅ x 0 ∣ ⋅ ∣ 2 a 2 x 0 ∣ = 2 a 2 S=\frac{1}{2}\cdot |2\cdot x_0|\cdot |\frac{2a^2}{x_0}|=2a^2 S=21⋅∣2⋅x0∣⋅∣x02a2∣=2a2.
- 学习资料
1.《高等数学(第六版)》 上册,同济大学数学系 编
- 感谢您的关注,更欢迎您的批评和指正!