1. 加法法则
定理:如果
lim
x
→
c
f
(
x
)
=
L
\lim_{x \to c} f(x) = L
limx→cf(x)=L 和
lim
x
→
c
g
(
x
)
=
M
\lim_{x \to c} g(x) = M
limx→cg(x)=M,那么
lim
x
→
c
[
f
(
x
)
+
g
(
x
)
]
=
L
+
M
\lim_{x \to c} [f(x) + g(x)] = L + M
x→clim[f(x)+g(x)]=L+M
证明:
- 根据极限的定义,对于任意 ϵ > 0 \epsilon > 0 ϵ>0,存在 δ 1 > 0 \delta_1 > 0 δ1>0 使得当 0 < ∣ x − c ∣ < δ 1 0 < |x - c| < \delta_1 0<∣x−c∣<δ1 时, ∣ f ( x ) − L ∣ < ϵ 2 |f(x) - L| < \frac{\epsilon}{2} ∣f(x)−L∣<2ϵ。
- 同样,存在 δ 2 > 0 \delta_2 > 0 δ2>0 使得当 0 < ∣ x − c ∣ < δ 2 0 < |x - c| < \delta_2 0<∣x−c∣<δ2 时, ∣ g ( x ) − M ∣ < ϵ 2 |g(x) - M| < \frac{\epsilon}{2} ∣g(x)−M∣<2ϵ。
- 取
δ
=
min
(
δ
1
,
δ
2
)
\delta = \min(\delta_1, \delta_2)
δ=min(δ1,δ2),则当
0
<
∣
x
−
c
∣
<
δ
0 < |x - c| < \delta
0<∣x−c∣<δ 时,
∣ f ( x ) + g ( x ) − ( L + M ) ∣ ≤ ∣ f ( x ) − L ∣ + ∣ g ( x ) − M ∣ < ϵ 2 + ϵ 2 = ϵ |f(x) + g(x) - (L + M)| \leq |f(x) - L| + |g(x) - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon ∣f(x)+g(x)−(L+M)∣≤∣f(x)−L∣+∣g(x)−M∣<2ϵ+2ϵ=ϵ - 因此, lim x → c [ f ( x ) + g ( x ) ] = L + M \lim_{x \to c} [f(x) + g(x)] = L + M limx→c[f(x)+g(x)]=L+M。
2. 减法法则
定理:如果
lim
x
→
c
f
(
x
)
=
L
\lim_{x \to c} f(x) = L
limx→cf(x)=L 和
lim
x
→
c
g
(
x
)
=
M
\lim_{x \to c} g(x) = M
limx→cg(x)=M,那么
lim
x
→
c
[
f
(
x
)
−
g
(
x
)
]
=
L
−
M
\lim_{x \to c} [f(x) - g(x)] = L - M
x→clim[f(x)−g(x)]=L−M
证明:
- 由加法法则, lim x → c [ f ( x ) − g ( x ) ] = lim x → c [ f ( x ) + ( − g ( x ) ) ] = L + ( − M ) = L − M \lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} [f(x) + (-g(x))] = L + (-M) = L - M limx→c[f(x)−g(x)]=limx→c[f(x)+(−g(x))]=L+(−M)=L−M。
3. 乘法法则
定理:如果
lim
x
→
c
f
(
x
)
=
L
\lim_{x \to c} f(x) = L
limx→cf(x)=L 和
lim
x
→
c
g
(
x
)
=
M
\lim_{x \to c} g(x) = M
limx→cg(x)=M,那么
lim
x
→
c
[
f
(
x
)
⋅
g
(
x
)
]
=
L
⋅
M
\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot M
x→clim[f(x)⋅g(x)]=L⋅M
证明:
- 设 ϵ > 0 \epsilon > 0 ϵ>0,需要找到 δ > 0 \delta > 0 δ>0 使得当 0 < ∣ x − c ∣ < δ 0 < |x - c| < \delta 0<∣x−c∣<δ 时, ∣ f ( x ) g ( x ) − L M ∣ < ϵ |f(x)g(x) - LM| < \epsilon ∣f(x)g(x)−LM∣<ϵ。
- 由于 lim x → c f ( x ) = L \lim_{x \to c} f(x) = L limx→cf(x)=L,存在 δ 1 > 0 \delta_1 > 0 δ1>0 使得当 0 < ∣ x − c ∣ < δ 1 0 < |x - c| < \delta_1 0<∣x−c∣<δ1 时, ∣ f ( x ) − L ∣ < 1 |f(x) - L| < 1 ∣f(x)−L∣<1,从而 ∣ f ( x ) ∣ < ∣ L ∣ + 1 |f(x)| < |L| + 1 ∣f(x)∣<∣L∣+1。
- 存在 δ 2 > 0 \delta_2 > 0 δ2>0 使得当 0 < ∣ x − c ∣ < δ 2 0 < |x - c| < \delta_2 0<∣x−c∣<δ2 时, ∣ f ( x ) − L ∣ < ϵ 2 ( ∣ M ∣ + 1 ) |f(x) - L| < \frac{\epsilon}{2(|M| + 1)} ∣f(x)−L∣<2(∣M∣+1)ϵ 和 ∣ g ( x ) − M ∣ < ϵ 2 ( ∣ L ∣ + 1 ) |g(x) - M| < \frac{\epsilon}{2(|L| + 1)} ∣g(x)−M∣<2(∣L∣+1)ϵ。
- 取
δ
=
min
(
δ
1
,
δ
2
)
\delta = \min(\delta_1, \delta_2)
δ=min(δ1,δ2),则当
0
<
∣
x
−
c
∣
<
δ
0 < |x - c| < \delta
0<∣x−c∣<δ 时,
∣ f ( x ) g ( x ) − L M ∣ = ∣ f ( x ) ( g ( x ) − M ) + ( f ( x ) − L ) M ∣ ≤ ∣ f ( x ) ∣ ∣ g ( x ) − M ∣ + ∣ f ( x ) − L ∣ ∣ M ∣ |f(x)g(x) - LM| = |f(x)(g(x) - M) + (f(x) - L)M| \leq |f(x)||g(x) - M| + |f(x) - L||M| ∣f(x)g(x)−LM∣=∣f(x)(g(x)−M)+(f(x)−L)M∣≤∣f(x)∣∣g(x)−M∣+∣f(x)−L∣∣M∣
< ( ∣ L ∣ + 1 ) ϵ 2 ( ∣ L ∣ + 1 ) + ϵ 2 ( ∣ M ∣ + 1 ) ∣ M ∣ < ϵ 2 + ϵ 2 = ϵ < (|L| + 1) \frac{\epsilon}{2(|L| + 1)} + \frac{\epsilon}{2(|M| + 1)} |M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon <(∣L∣+1)2(∣L∣+1)ϵ+2(∣M∣+1)ϵ∣M∣<2ϵ+2ϵ=ϵ - 因此, lim x → c [ f ( x ) ⋅ g ( x ) ] = L ⋅ M \lim_{x \to c} [f(x) \cdot g(x)] = L \cdot M limx→c[f(x)⋅g(x)]=L⋅M。
4. 除法法则
定理:如果
lim
x
→
c
f
(
x
)
=
L
\lim_{x \to c} f(x) = L
limx→cf(x)=L 和
lim
x
→
c
g
(
x
)
=
M
≠
0
\lim_{x \to c} g(x) = M \neq 0
limx→cg(x)=M=0,那么
lim
x
→
c
[
f
(
x
)
g
(
x
)
]
=
L
M
\lim_{x \to c} \left[\frac{f(x)}{g(x)}\right] = \frac{L}{M}
x→clim[g(x)f(x)]=ML
证明:
- 设 ϵ > 0 \epsilon > 0 ϵ>0,需要找到 δ > 0 \delta > 0 δ>0 使得当 0 < ∣ x − c ∣ < δ 0 < |x - c| < \delta 0<∣x−c∣<δ 时, ∣ f ( x ) g ( x ) − L M ∣ < ϵ \left|\frac{f(x)}{g(x)} - \frac{L}{M}\right| < \epsilon g(x)f(x)−ML <ϵ。
- 由于 lim x → c g ( x ) = M ≠ 0 \lim_{x \to c} g(x) = M \neq 0 limx→cg(x)=M=0,存在 δ 1 > 0 \delta_1 > 0 δ1>0 使得当 0 < ∣ x − c ∣ < δ 1 0 < |x - c| < \delta_1 0<∣x−c∣<δ1 时, ∣ g ( x ) − M ∣ < ∣ M ∣ 2 |g(x) - M| < \frac{|M|}{2} ∣g(x)−M∣<2∣M∣,从而 ∣ g ( x ) ∣ > ∣ M ∣ 2 |g(x)| > \frac{|M|}{2} ∣g(x)∣>2∣M∣。
- 存在 δ 2 > 0 \delta_2 > 0 δ2>0 使得当 0 < ∣ x − c ∣ < δ 2 0 < |x - c| < \delta_2 0<∣x−c∣<δ2 时, ∣ f ( x ) − L ∣ < ϵ ∣ M ∣ 2 4 |f(x) - L| < \frac{\epsilon |M|^2}{4} ∣f(x)−L∣<4ϵ∣M∣2 和 ∣ g ( x ) − M ∣ < ϵ ∣ M ∣ 2 4 ∣ L ∣ + 1 |g(x) - M| < \frac{\epsilon |M|^2}{4|L| + 1} ∣g(x)−M∣<4∣L∣+1ϵ∣M∣2。
- 取
δ
=
min
(
δ
1
,
δ
2
)
\delta = \min(\delta_1, \delta_2)
δ=min(δ1,δ2),则当
0
<
∣
x
−
c
∣
<
δ
0 < |x - c| < \delta
0<∣x−c∣<δ 时,
∣ f ( x ) g ( x ) − L M ∣ = ∣ f ( x ) M − g ( x ) L g ( x ) M ∣ = ∣ f ( x ) M − g ( x ) L ∣ ∣ g ( x ) M ∣ \left|\frac{f(x)}{g(x)} - \frac{L}{M}\right| = \left|\frac{f(x)M - g(x)L}{g(x)M}\right| = \frac{|f(x)M - g(x)L|}{|g(x)M|} g(x)f(x)−ML = g(x)Mf(x)M−g(x)L =∣g(x)M∣∣f(x)M−g(x)L∣
= ∣ f ( x ) M − f ( x ) g ( x ) + f ( x ) g ( x ) − g ( x ) L ∣ ∣ g ( x ) M ∣ ≤ ∣ f ( x ) ∣ ∣ M − g ( x ) ∣ + ∣ g ( x ) ∣ ∣ f ( x ) − L ∣ ∣ g ( x ) M ∣ = \frac{|f(x)M - f(x)g(x) + f(x)g(x) - g(x)L|}{|g(x)M|} \leq \frac{|f(x)||M - g(x)| + |g(x)||f(x) - L|}{|g(x)M|} =∣g(x)M∣∣f(x)M−f(x)g(x)+f(x)g(x)−g(x)L∣≤∣g(x)M∣∣f(x)∣∣M−g(x)∣+∣g(x)∣∣f(x)−L∣
< ( ∣ L ∣ + 1 ) ϵ ∣ M ∣ 2 4 ∣ L ∣ + 1 + ∣ M ∣ 2 ϵ ∣ M ∣ 2 4 ∣ M ∣ 2 2 = ϵ < \frac{\left(|L| + 1\right) \frac{\epsilon |M|^2}{4|L| + 1} + \frac{|M|}{2} \frac{\epsilon |M|^2}{4}}{\frac{|M|^2}{2}} = \epsilon <2∣M∣2(∣L∣+1)4∣L∣+1ϵ∣M∣2+2∣M∣4ϵ∣M∣2=ϵ - 因此, lim x → c [ f ( x ) g ( x ) ] = L M \lim_{x \to c} \left[\frac{f(x)}{g(x)}\right] = \frac{L}{M} limx→c[g(x)f(x)]=ML。