Bootstrap

极限四则运算证明

1. 加法法则

定理:如果 lim ⁡ x → c f ( x ) = L \lim_{x \to c} f(x) = L limxcf(x)=L lim ⁡ x → c g ( x ) = M \lim_{x \to c} g(x) = M limxcg(x)=M,那么
lim ⁡ x → c [ f ( x ) + g ( x ) ] = L + M \lim_{x \to c} [f(x) + g(x)] = L + M xclim[f(x)+g(x)]=L+M

证明

  • 根据极限的定义,对于任意 ϵ > 0 \epsilon > 0 ϵ>0,存在 δ 1 > 0 \delta_1 > 0 δ1>0 使得当 0 < ∣ x − c ∣ < δ 1 0 < |x - c| < \delta_1 0<xc<δ1 时, ∣ f ( x ) − L ∣ < ϵ 2 |f(x) - L| < \frac{\epsilon}{2} f(x)L<2ϵ
  • 同样,存在 δ 2 > 0 \delta_2 > 0 δ2>0 使得当 0 < ∣ x − c ∣ < δ 2 0 < |x - c| < \delta_2 0<xc<δ2 时, ∣ g ( x ) − M ∣ < ϵ 2 |g(x) - M| < \frac{\epsilon}{2} g(x)M<2ϵ
  • δ = min ⁡ ( δ 1 , δ 2 ) \delta = \min(\delta_1, \delta_2) δ=min(δ1,δ2),则当 0 < ∣ x − c ∣ < δ 0 < |x - c| < \delta 0<xc<δ 时,
    ∣ f ( x ) + g ( x ) − ( L + M ) ∣ ≤ ∣ f ( x ) − L ∣ + ∣ g ( x ) − M ∣ < ϵ 2 + ϵ 2 = ϵ |f(x) + g(x) - (L + M)| \leq |f(x) - L| + |g(x) - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon f(x)+g(x)(L+M)f(x)L+g(x)M<2ϵ+2ϵ=ϵ
  • 因此, lim ⁡ x → c [ f ( x ) + g ( x ) ] = L + M \lim_{x \to c} [f(x) + g(x)] = L + M limxc[f(x)+g(x)]=L+M

2. 减法法则

定理:如果 lim ⁡ x → c f ( x ) = L \lim_{x \to c} f(x) = L limxcf(x)=L lim ⁡ x → c g ( x ) = M \lim_{x \to c} g(x) = M limxcg(x)=M,那么
lim ⁡ x → c [ f ( x ) − g ( x ) ] = L − M \lim_{x \to c} [f(x) - g(x)] = L - M xclim[f(x)g(x)]=LM

证明

  • 由加法法则, lim ⁡ x → c [ f ( x ) − g ( x ) ] = lim ⁡ x → c [ f ( x ) + ( − g ( x ) ) ] = L + ( − M ) = L − M \lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} [f(x) + (-g(x))] = L + (-M) = L - M limxc[f(x)g(x)]=limxc[f(x)+(g(x))]=L+(M)=LM

3. 乘法法则

定理:如果 lim ⁡ x → c f ( x ) = L \lim_{x \to c} f(x) = L limxcf(x)=L lim ⁡ x → c g ( x ) = M \lim_{x \to c} g(x) = M limxcg(x)=M,那么
lim ⁡ x → c [ f ( x ) ⋅ g ( x ) ] = L ⋅ M \lim_{x \to c} [f(x) \cdot g(x)] = L \cdot M xclim[f(x)g(x)]=LM

证明

  • ϵ > 0 \epsilon > 0 ϵ>0,需要找到 δ > 0 \delta > 0 δ>0 使得当 0 < ∣ x − c ∣ < δ 0 < |x - c| < \delta 0<xc<δ 时, ∣ f ( x ) g ( x ) − L M ∣ < ϵ |f(x)g(x) - LM| < \epsilon f(x)g(x)LM<ϵ
  • 由于 lim ⁡ x → c f ( x ) = L \lim_{x \to c} f(x) = L limxcf(x)=L,存在 δ 1 > 0 \delta_1 > 0 δ1>0 使得当 0 < ∣ x − c ∣ < δ 1 0 < |x - c| < \delta_1 0<xc<δ1 时, ∣ f ( x ) − L ∣ < 1 |f(x) - L| < 1 f(x)L<1,从而 ∣ f ( x ) ∣ < ∣ L ∣ + 1 |f(x)| < |L| + 1 f(x)<L+1
  • 存在 δ 2 > 0 \delta_2 > 0 δ2>0 使得当 0 < ∣ x − c ∣ < δ 2 0 < |x - c| < \delta_2 0<xc<δ2 时, ∣ f ( x ) − L ∣ < ϵ 2 ( ∣ M ∣ + 1 ) |f(x) - L| < \frac{\epsilon}{2(|M| + 1)} f(x)L<2(M+1)ϵ ∣ g ( x ) − M ∣ < ϵ 2 ( ∣ L ∣ + 1 ) |g(x) - M| < \frac{\epsilon}{2(|L| + 1)} g(x)M<2(L+1)ϵ
  • δ = min ⁡ ( δ 1 , δ 2 ) \delta = \min(\delta_1, \delta_2) δ=min(δ1,δ2),则当 0 < ∣ x − c ∣ < δ 0 < |x - c| < \delta 0<xc<δ 时,
    ∣ f ( x ) g ( x ) − L M ∣ = ∣ f ( x ) ( g ( x ) − M ) + ( f ( x ) − L ) M ∣ ≤ ∣ f ( x ) ∣ ∣ g ( x ) − M ∣ + ∣ f ( x ) − L ∣ ∣ M ∣ |f(x)g(x) - LM| = |f(x)(g(x) - M) + (f(x) - L)M| \leq |f(x)||g(x) - M| + |f(x) - L||M| f(x)g(x)LM=f(x)(g(x)M)+(f(x)L)Mf(x)∣∣g(x)M+f(x)L∣∣M
    < ( ∣ L ∣ + 1 ) ϵ 2 ( ∣ L ∣ + 1 ) + ϵ 2 ( ∣ M ∣ + 1 ) ∣ M ∣ < ϵ 2 + ϵ 2 = ϵ < (|L| + 1) \frac{\epsilon}{2(|L| + 1)} + \frac{\epsilon}{2(|M| + 1)} |M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon <(L+1)2(L+1)ϵ+2(M+1)ϵM<2ϵ+2ϵ=ϵ
  • 因此, lim ⁡ x → c [ f ( x ) ⋅ g ( x ) ] = L ⋅ M \lim_{x \to c} [f(x) \cdot g(x)] = L \cdot M limxc[f(x)g(x)]=LM

4. 除法法则

定理:如果 lim ⁡ x → c f ( x ) = L \lim_{x \to c} f(x) = L limxcf(x)=L lim ⁡ x → c g ( x ) = M ≠ 0 \lim_{x \to c} g(x) = M \neq 0 limxcg(x)=M=0,那么
lim ⁡ x → c [ f ( x ) g ( x ) ] = L M \lim_{x \to c} \left[\frac{f(x)}{g(x)}\right] = \frac{L}{M} xclim[g(x)f(x)]=ML

证明

  • ϵ > 0 \epsilon > 0 ϵ>0,需要找到 δ > 0 \delta > 0 δ>0 使得当 0 < ∣ x − c ∣ < δ 0 < |x - c| < \delta 0<xc<δ 时, ∣ f ( x ) g ( x ) − L M ∣ < ϵ \left|\frac{f(x)}{g(x)} - \frac{L}{M}\right| < \epsilon g(x)f(x)ML <ϵ
  • 由于 lim ⁡ x → c g ( x ) = M ≠ 0 \lim_{x \to c} g(x) = M \neq 0 limxcg(x)=M=0,存在 δ 1 > 0 \delta_1 > 0 δ1>0 使得当 0 < ∣ x − c ∣ < δ 1 0 < |x - c| < \delta_1 0<xc<δ1 时, ∣ g ( x ) − M ∣ < ∣ M ∣ 2 |g(x) - M| < \frac{|M|}{2} g(x)M<2M,从而 ∣ g ( x ) ∣ > ∣ M ∣ 2 |g(x)| > \frac{|M|}{2} g(x)>2M
  • 存在 δ 2 > 0 \delta_2 > 0 δ2>0 使得当 0 < ∣ x − c ∣ < δ 2 0 < |x - c| < \delta_2 0<xc<δ2 时, ∣ f ( x ) − L ∣ < ϵ ∣ M ∣ 2 4 |f(x) - L| < \frac{\epsilon |M|^2}{4} f(x)L<4ϵM2 ∣ g ( x ) − M ∣ < ϵ ∣ M ∣ 2 4 ∣ L ∣ + 1 |g(x) - M| < \frac{\epsilon |M|^2}{4|L| + 1} g(x)M<4∣L+1ϵM2
  • δ = min ⁡ ( δ 1 , δ 2 ) \delta = \min(\delta_1, \delta_2) δ=min(δ1,δ2),则当 0 < ∣ x − c ∣ < δ 0 < |x - c| < \delta 0<xc<δ 时,
    ∣ f ( x ) g ( x ) − L M ∣ = ∣ f ( x ) M − g ( x ) L g ( x ) M ∣ = ∣ f ( x ) M − g ( x ) L ∣ ∣ g ( x ) M ∣ \left|\frac{f(x)}{g(x)} - \frac{L}{M}\right| = \left|\frac{f(x)M - g(x)L}{g(x)M}\right| = \frac{|f(x)M - g(x)L|}{|g(x)M|} g(x)f(x)ML = g(x)Mf(x)Mg(x)L =g(x)Mf(x)Mg(x)L
    = ∣ f ( x ) M − f ( x ) g ( x ) + f ( x ) g ( x ) − g ( x ) L ∣ ∣ g ( x ) M ∣ ≤ ∣ f ( x ) ∣ ∣ M − g ( x ) ∣ + ∣ g ( x ) ∣ ∣ f ( x ) − L ∣ ∣ g ( x ) M ∣ = \frac{|f(x)M - f(x)g(x) + f(x)g(x) - g(x)L|}{|g(x)M|} \leq \frac{|f(x)||M - g(x)| + |g(x)||f(x) - L|}{|g(x)M|} =g(x)Mf(x)Mf(x)g(x)+f(x)g(x)g(x)Lg(x)Mf(x)∣∣Mg(x)+g(x)∣∣f(x)L
    < ( ∣ L ∣ + 1 ) ϵ ∣ M ∣ 2 4 ∣ L ∣ + 1 + ∣ M ∣ 2 ϵ ∣ M ∣ 2 4 ∣ M ∣ 2 2 = ϵ < \frac{\left(|L| + 1\right) \frac{\epsilon |M|^2}{4|L| + 1} + \frac{|M|}{2} \frac{\epsilon |M|^2}{4}}{\frac{|M|^2}{2}} = \epsilon <2M2(L+1)4∣L+1ϵM2+2M4ϵM2=ϵ
  • 因此, lim ⁡ x → c [ f ( x ) g ( x ) ] = L M \lim_{x \to c} \left[\frac{f(x)}{g(x)}\right] = \frac{L}{M} limxc[g(x)f(x)]=ML
;