Bootstrap

二阶变系数线性微分方程

常数变异法

\frac{d^{2}y}{dx^{2}}+p(x)\frac{dy}{dx}+q(x)y=f(x)  (1)

\frac{d^{2}y}{dx^{2}}+p(x)\frac{dy}{dx}+q(x)y=0的通解为y=C_{1}y_{1}(x)+C_{2}y_{2}(x)

将通解中的常数,C_{1},C_{2}变异成函数u_{1},u_{2}

y=u_{1}y_{1}+u_{2}y_{2}是(1)的一个解。

y^{'}=u_{1}^{'}y_{1}+u_{1}y^{'}_{1}+u_{2}^{'}y_{2}+u_{2}y^{'}_{2} =(u_{1}^{'}y_{1}+u_{2}^{'}y_{2})+(u_{1}y^{'}_{1}+u_{2}y^{'}_{2})

补充条件:令u_{1}^{'}y_{1}+u_{2}^{'}y_{2}=0  (2)

则:y^{'} =u_{1}y^{'}_{1}+u_{2}y^{'}_{2}

y^{''} =u_{1}^{'}y^{'}_{1}+u_{1}y^{''}_{1}+ u_{2}^{'}y^{'}_{2}+u_{2}y^{''}_{2}=(u_{1}y^{''}_{1}+u_{2}y^{''}_{2})+(u_{1}^{'}y^{'}_{1}+u_{2}^{'}y^{'}_{2}) 

代入(1)得

(u_{1}y^{''}_{1}+u_{2}y^{''}_{2})+(u_{1}^{'}y^{'}_{1}+u_{2}^{'}y^{'}_{2})+p(x)(u_{1}y^{'}_{1}+u_{2}y^{'}_{2})+q(x)(u_{1}y_{1}+u_{2}y_{2})=f(x)

(u_{1}y_{1}^{''}+u_{1}py_{1}^{'}+u_{1}qy_{1})+(u_{2}y_{2}^{''}+u_{2}py^{'}_{2}+u_{2}qy)+(u_{1}^{'}y^{'}_{1}+u_{2}^{'}y^{'}_{2})=f(x)

因为y_{1},y_{2}是齐次方程的解,所以

u_{1}y_{1}^{''}+u_{1}py_{1}^{'}+u_{1}qy_{1}=0

u_{2}y_{2}^{''}+u_{2}py^{'}_{2}+u_{2}qy=0

所以

u_{1}^{'}y^{'}_{1}+u_{2}^{'}y^{'}_{2}=f(x)  (3)

u_{1}^{'}y_{1}+u_{2}^{'}y_{2}=0   (2)(补充条件)

方程组(2)(3)有唯一的解

记作:u_{1}^{'}=\varphi _{1}(x),u_{2}^{'}=\varphi _{2}(x)

u_{1}=\int \varphi _{1}(x)dx,u_{2}=\int \varphi _{2}(x)dx

(1)有特解\widetilde{y}=y_{1}\int \varphi _{1}(x)dx+y_{2}\int \varphi _{2}(x)dx

(1)的通解为y=Y+\widetilde{y}

例题:

y^{''}-2y^{'}+y=\frac{e^{x}}{x}

这是一个二阶常系数非齐次线性方程。

1.先求出齐次线性方程的通解,然后再求其本身的一个特解。

r^{2}-2r+1=0

(r-1)^{2}=0

r_{1}=r_{2}=1

所以y^{''}-2y^{'}+y=0的通解Y=(C_{1}+C_{2}x)e^{x}

Y=C_{1}e^{x}+C_{2}xe^{x}

y_{1}=e^{x},y_{2}=xe^{x}

y=u_{1}e^{x}+u_{2}xe^{x}是(1)的一个解。  

u_{1}^{'}y^{'}_{1}+u_{2}^{'}y^{'}_{2}=f(x)  (3)

u_{1}^{'}y_{1}+u_{2}^{'}y_{2}=0   (2)

y_{1},y_{2}代入

u_{1}^{'}e^{x}+u_{2}^{'}xe^{x}=0

u_{1}^{'}e^{x}+u_{2}^{'}e^{x}+u_{2}^{'}xe^{x}=\frac{e^{x}}{x}

u_{2}^{'}=\frac{1}{x},u_{1}^{'}=-1

u_{2}=ln|x|,u_{1}=-x

(1)有特解\widetilde{y}=-xe^{x}+(ln|x|)xe^{x}

(1)的通解为y=Y+\widetilde{y}=(C_{1}+C_{2x}-x+xln|x|)e^{x}

2、幂级数解法

 y^{''}+y=0

设方程的解,可以展开幂级数。

y=a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+.......+a_{n}x^{n}+......

y^{'}=a_{1}+2a_{2}x+3a_{3}x^{2}+4a_{4}x^{3}+.......+(n+1)a_{n+1}x^{n}+......

y^{''}=2a_{2}+6a_{3}x+12a_{4}x^{2}+.......+(n+2)(n+1)a_{n+2}x^{n}+......

代入方程

y^{''}+y=2a_{2}+6a_{3}x+12a_{4}x^{2}+.......+(n+2)(n+1)a_{n+2}x^{n}+......+a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+.......+a_{n}x^{n}+......=(2a_{2}+a_{0})+(6a_{3}x+a_{1}x)+.....=0

因为y^{''}+y=0

所以

a_{0}+2a_{2}=0     a_{2}=-\frac{1}{2}a_{0}

6a_{3}+a_{1}=0   a_{3}=-\frac{1}{3*2}a_{1}

12a_{4}+a_{2}=0  a4=-\frac{1}{4*3}a_{2}=(-1)^{2}\frac{1}{4*3*2}a_{0}

(5*4)a_{5}+a_{3}=0   a_{5}=-\frac{1}{5*4}a_{2}=(-1)^{2}\frac{1}{5*4*3*2}a_{1}

..................

y=(a_{0}-\frac{1}{2!}a_{0}x^{2}+\frac{1}{4!}a_{0}x^{4}-\frac{1}{6!}a_{0}x^{6} +............)+(\frac{1}{3!}a_{1}x^{3}+\frac{1}{5!}a_{1}x^{5}-\frac{1}{7!}a_{1}x^{7}+.........)

=a_{0}cosx+a_{1}sinx

y=a_{0}cosx+a_{1}sinx为方程的通解

;