希望能做一些麻瓜的事情造福人类。。。
f(x)=x f ( x ) = x
$ f(x)=x $
s=∑n1ni s = ∑ 1 n n i
$
s=\sum_1^n{n_i}
$
x2 x 2
$ x^2 $
xi x i
$ x_i $
{a+x} { a + x }
$ \lbrace a+x \rbrace $
⟨x⟩ ⟨ x ⟩
$ \langle x \rangle $
⌈x2⌉ ⌈ x 2 ⌉
$ \lceil \frac{x}{2} \rceil $
⌊x⌋ ⌊ x ⌋
$ \lfloor x \rfloor $
{∑ni=0i2=2ax2+1} { ∑ i = 0 n i 2 = 2 a x 2 + 1 }
$
\lbrace \sum_{i=0}^{n}i^{2}=\frac{2a}{x^2+1} \rbrace
$
{∑ni=0i2=2ax2+1} { ∑ i = 0 n i 2 = 2 a x 2 + 1 }
$
\left\lbrace
\sum_{i=0}^{n}i^{2}=\frac{2a}{x^2+1}
\right\rbrace
$
∑ni ∑ i n
$\sum_i^n$
∫∞1 ∫ 1 ∞
$ \int_{1}^{\infty} $
∏n1 ⋃n1 ∬n1 ∏ 1 n ⋃ 1 n ∬ 1 n
$
\prod_{1}^{n} \\
\bigcup_{1}^{n} \\
\iint_{1}^{n}
$
ab a b
$
\frac ab
$
12 1 2
$
\frac{1}{2}
$
a+1b+1 a + 1 b + 1
$
{a+1 \over b+1}
$
x2‾‾√x+1 x 2 x + 1
$
\sqrt[x+1]{x^2}
$
y={xα y = { x α
$y =\begin{cases} x\\ \alpha \end{cases}$
⋅ ⋅
$\cdot$
≤ ≤
$\leq$
≥ ≥
$\geq$
≠ ≠
$\neq$
≈ ≈
$\approx$
∏ ∏
$\prod$
∐ ∐
$\coprod$
⋯ ⋯
$\cdots$
∫ ∫
$\int$
∬ ∬
$\iint$
∮ ∮
$\oint$
∞ ∞
$\infty$
∇ ∇
$\nabla$
∵ ∵
$\because$
∴ ∴
$\therefore$
α α
$\alpha$
β β
$\beta$
γ γ
$\gamma$
Γ Γ
$\Gamma$
δ δ
$\delta$
Δ Δ
$\Delta$
ϵ ϵ
$\epsilon$
ε ε
$\varepsilon$
ζ ζ
$\zeta$
η η
$\eta$
θ θ
$\theta$
Θ Θ
$\Theta$
ϑ ϑ
$\vartheta$
ι ι
$\iota$
π π
$\pi$
ϕ ϕ
$\phi$
ψ ψ
$\psi$
Ψ Ψ
$\Psi$
ω ω
$\omega$
Ω Ω
$\Omega$
χ χ
$\chi$
ρ ρ
$\rho$
ο ο
$\omicron$
σ σ
$\sigma$
Σ Σ
$\Sigma$
ν ν
$\nu$
ξ ξ
$\xi$
τ τ
$\tau$
λ λ
$\lambda$
Λ Λ
$\Lambda$
μ μ
$\mu$
∂ ∂
$\partial$