Bootstrap

A城市巡游车与网约车运营特征对比分析—数据读取及统计

初始化

import pandas as pd
import numpy as np

# 文件目录,绝对路径
INPUT_PATH = 'G:\DCIC\Data\\'

# 文件读取行数
MAX_ROWS = 100000 

数据读取

巡游车GPS数据读取

taxigps2019 = pd.read_csv(INPUT_PATH + 'taxiGps20190531.csv', nrows=MAX_ROWS)
# 查看数据的统计描述
taxigps2019.describe()
OPERATING_STATUSGPS_SPEEDDRIVING_DIRECTIONLONGITUDELATITUDE
count100000.000000100000.000000100000.000000100000.000000100000.000000
mean2.41583015.922179161.451510117.38813424.354396
std2.32047222.837529113.7259469.2730661.932351
min1.0000000.0000000.0000000.0000000.000000
25%1.0000000.00000059.000000118.10098224.480172
50%1.0000000.000000167.000000118.12317524.493398
75%6.00000028.900000261.000000118.14949824.516875
max8.000000381.300000360.000000129.11096034.656481
taxigps2019.head()
OPERATING_STATUSGPS_SPEEDDRIVING_DIRECTIONGPS_TIMELONGITUDELATITUDECARNO
010.002019/5/31 0:00:05118.09845124.493498c3e622b913ca7085db129fa379121b90
110.042019/5/31 0:00:08118.05505324.5643959b4802bcb6344a5772814557428aee85
210.002019/5/31 0:00:090.0000000.000000f7e16e0e76abf3460007f65cb1509565
310.002019/5/31 0:00:100.0000000.000000c607b7a160ab91bf05f8085ed221196f
410.8322019/5/31 0:00:12117.99045224.5698827be62de4645772356a3bb7190bc54c6d
taxigps2019.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 7 columns):
 #   Column             Non-Null Count   Dtype  
---  ------             --------------   -----  
 0   OPERATING_STATUS   100000 non-null  int64  
 1   GPS_SPEED          100000 non-null  float64
 2   DRIVING_DIRECTION  100000 non-null  int64  
 3   GPS_TIME           100000 non-null  object 
 4   LONGITUDE          100000 non-null  float64
 5   LATITUDE           100000 non-null  float64
 6   CARNO              100000 non-null  object 
dtypes: float64(3), int64(2), object(2)
memory usage: 5.3+ MB
  • 将字段类型根据取值空间进行修改,可以压缩内存使用需求
taxigps2019 = pd.read_csv(INPUT_PATH + 'taxiGps20190531.csv', nrows=MAX_ROWS,
                         dtype = {
                             'DRIVING_DIRECTION': np.uint16,
                             'OPERATING_STATUS': np.uint8,
                             'LONGITUDE': np.float32,
                             'LATITUDE': np.float32,
                             'GPS_SPEED': np.float16 
                         })

taxigps2019.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 7 columns):
 #   Column             Non-Null Count   Dtype  
---  ------             --------------   -----  
 0   OPERATING_STATUS   100000 non-null  uint8  
 1   GPS_SPEED          100000 non-null  float16
 2   DRIVING_DIRECTION  100000 non-null  uint16 
 3   GPS_TIME           100000 non-null  object 
 4   LONGITUDE          100000 non-null  float32
 5   LATITUDE           100000 non-null  float32
 6   CARNO              100000 non-null  object 
dtypes: float16(1), float32(2), object(2), uint16(1), uint8(1)
memory usage: 2.8+ MB

对GPS数据进行排序

taxigps2019 = taxigps2019[taxigps2019.columns[::-1]] # 把列的顺序反过来
taxigps2019.sort_values(by=['CARNO','GPS_TIME'], inplace=True) # 根据车号以及GPS_TIME进行排序
taxigps2019.reset_index(inplace=True, drop=True)
taxigps2019.head()
CARNOLATITUDELONGITUDEGPS_TIMEDRIVING_DIRECTIONGPS_SPEEDOPERATING_STATUS
00006d282be70d06881a7513b69fcaa6024.479755118.1469352019/5/31 1:31:202920.01
10006d282be70d06881a7513b69fcaa6024.479755118.1469352019/5/31 1:31:352920.01
20006d282be70d06881a7513b69fcaa6024.479755118.1469352019/5/31 1:31:502920.01
30006d282be70d06881a7513b69fcaa6024.479755118.1469352019/5/31 1:32:052920.01
40006d282be70d06881a7513b69fcaa6024.479755118.1469352019/5/31 1:32:202920.01

将多天的数据拼接在一起

# 出租车2019年5月31日-6月1日的GPS数据
taxigps2019 = pd.concat([
    pd.read_csv(INPUT_PATH + 'taxiGps20190531.csv', nrows=MAX_ROWS,
                         dtype = {
                             'DRIVING_DIRECTION': np.uint16,
                             'OPERATING_STATUS': np.uint8,
                             'LONGITUDE': np.float32,
                             'LATITUDE': np.float32,
                             'GPS_SPEED': np.float16 
                         }),
    pd.read_csv(INPUT_PATH + 'taxiGps20190601.csv', nrows=MAX_ROWS,
                         dtype = {
                             'DRIVING_DIRECTION': np.uint16,
                             'OPERATING_STATUS': np.uint8,
                             'LONGITUDE': np.float32,
                             'LATITUDE': np.float32,
                             'GPS_SPEED': np.float16 
                         })
])
taxigps2019 = taxigps2019[taxigps2019.columns[::-1]]
taxigps2019.sort_values(by=['CARNO','GPS_TIME'], inplace=True)
taxigps2019.reset_index(inplace=True)
print(taxigps2019.head())
print(taxigps2019.tail())
   index                             CARNO   LATITUDE   LONGITUDE  \
0   7622  0006d282be70d06881a7513b69fcaa60  24.479755  118.146935   
1  11509  0006d282be70d06881a7513b69fcaa60  24.479755  118.146935   
2  15763  0006d282be70d06881a7513b69fcaa60  24.479755  118.146935   
3  19754  0006d282be70d06881a7513b69fcaa60  24.479755  118.146935   
4  23693  0006d282be70d06881a7513b69fcaa60  24.479755  118.146935   

            GPS_TIME  DRIVING_DIRECTION  GPS_SPEED  OPERATING_STATUS  
0  2019/5/31 1:31:20                292        0.0                 1  
1  2019/5/31 1:31:35                292        0.0                 1  
2  2019/5/31 1:31:50                292        0.0                 1  
3  2019/5/31 1:32:05                292        0.0                 1  
4  2019/5/31 1:32:20                292        0.0                 1  
        index                             CARNO   LATITUDE   LONGITUDE  \
199995  72693  fff20f025f560278d601b2fd47e1f6b7  24.465818  118.073380   
199996  81887  fff20f025f560278d601b2fd47e1f6b7  24.465914  118.071518   
199997  84249  fff20f025f560278d601b2fd47e1f6b7  24.465792  118.070946   
199998  92843  fff20f025f560278d601b2fd47e1f6b7  24.463242  118.070229   
199999  94174  fff20f025f560278d601b2fd47e1f6b7  24.463011  118.070023   

                GPS_TIME  DRIVING_DIRECTION  GPS_SPEED  OPERATING_STATUS  
199995  2019/6/1 0:04:10                266  26.296875                 1  
199996  2019/6/1 0:04:41                274  26.296875                 1  
199997  2019/6/1 0:04:49                214  27.203125                 1  
199998  2019/6/1 0:05:19                198  30.000000                 1  
199999  2019/6/1 0:05:24                258  27.703125                 1  

巡游车订单读取

taxiorder2019 = pd.concat([
    pd.read_csv(INPUT_PATH + 'taxiOrder20190531.csv', nrows=MAX_ROWS,
                           dtype = {
                               'GETON_LONGITUDE': np.float32,
                               'GETON_LATITUDE': np.float32,
                               'GETOFF_LONGITUDE': np.float32,
                               'GETOFF_LATITUDE': np.float32,
                               'PASS_MILE': np.float16,
                               'NOPASS_MILE': np.float16,
                               'WAITING_TIME': np.float16
                           }),
    pd.read_csv(INPUT_PATH + 'taxiOrder20190601.csv', nrows=MAX_ROWS,
                           dtype = {
                               'GETON_LONGITUDE': np.float32,
                               'GETON_LATITUDE': np.float32,
                               'GETOFF_LONGITUDE': np.float32,
                               'GETOFF_LATITUDE': np.float32,
                               'PASS_MILE': np.float16,
                               'NOPASS_MILE': np.float16,
                               'WAITING_TIME': np.float16
                           })
])
taxiorder2019 = taxiorder2019.rename(columns={'CAR_NO':'CARNO'})
taxiorder2019.sort_values(by=['CARNO','GETON_DATE'], inplace=True) # 根据车号和上车时间进行排序
taxiorder2019.reset_index(inplace=True, drop=True)
print(taxiorder2019.head())
print(taxiorder2019.tail()) 
                              CARNO           GETON_DATE  GETON_LONGITUDE  \
0  0006d282be70d06881a7513b69fcaa60  2019-05-31 00:08:00       118.155060   
1  0006d282be70d06881a7513b69fcaa60  2019-05-31 02:30:00       118.154999   
2  0006d282be70d06881a7513b69fcaa60  2019-05-31 07:47:00       118.155083   
3  0006d282be70d06881a7513b69fcaa60  2019-05-31 08:19:00       118.146347   
4  0006d282be70d06881a7513b69fcaa60  2019-05-31 08:43:00       118.129448   

   GETON_LATITUDE          GETOFF_DATE  GETOFF_LONGITUDE  GETOFF_LATITUDE  \
0       24.506035  2019-05-31 00:13:00        118.176666        24.509895   
1       24.488607  2019-05-31 02:46:00        118.188156        24.498117   
2       24.506119  2019-05-31 08:00:00        118.181938        24.531134   
3       24.515144  2019-05-31 08:32:00        118.112679        24.520956   
4       24.496716  2019-05-31 08:56:00        118.157806        24.486753   

   PASS_MILE  NOPASS_MILE  WAITING_TIME  
0   3.099609     1.299805          62.0  
1   7.300781     0.000000         326.0  
2   4.398438    16.906250         328.0  
3   4.601562     0.000000         254.0  
4   3.300781     0.199951         438.0  
                                   CARNO           GETON_DATE  \
199995  fff20f025f560278d601b2fd47e1f6b7  2019-06-01 01:03:00   
199996  fff20f025f560278d601b2fd47e1f6b7  2019-06-01 01:19:00   
199997  fff20f025f560278d601b2fd47e1f6b7  2019-06-01 03:00:00   
199998  fff20f025f560278d601b2fd47e1f6b7  2019-06-01 10:05:00   
199999  fff20f025f560278d601b2fd47e1f6b7  2019-06-01 10:44:00   

        GETON_LONGITUDE  GETON_LATITUDE          GETOFF_DATE  \
199995       118.118797       24.428305  2019-06-01 01:07:00   
199996       118.119179       24.430992  2019-06-01 01:35:00   
199997       118.173531       24.481377  2019-06-01 03:00:00   
199998       118.158691       24.448475  2019-06-01 10:20:00   
199999       118.173271       24.463055  2019-06-01 11:00:00   

        GETOFF_LONGITUDE  GETOFF_LATITUDE  PASS_MILE  NOPASS_MILE  \
199995        118.111732        24.440104   2.000000    10.601562   
199996        118.170212        24.487490  12.203125     4.601562   
199997        118.171600        24.482180   0.099976    30.000000   
199998        118.118454        24.479401   8.898438    22.906250   
199999        118.088173        24.439388  11.796875    10.500000   

        WAITING_TIME  
199995          59.0  
199996         142.0  
199997           0.0  
199998         179.0  
199999         210.0  

网约车GPS数据读取

wycgps2019 = pd.read_csv(INPUT_PATH + 'wycGps20190531.csv', nrows=MAX_ROWS,
                        dtype={
                            'LONGITUDE': np.float32,
                            'LATITUDE': np.float32,
                            'SPEED': np.float16
                        })

wycgps2019 = wycgps2019.rename(columns={'CAR_NO':'CARNO'})
wycgps2019 = wycgps2019[wycgps2019.columns[::-1]]
wycgps2019.sort_values(by=['CARNO','POSITION_TIME'], inplace=True)

wycgps2019['BIZ_STATUS'] = wycgps2019['BIZ_STATUS'].fillna(-1).astype(np.int8)
wycgps2019['ENCRYPT'] = wycgps2019['ENCRYPT'].fillna(-1).astype(np.int8)
wycgps2019.head() 
CARNOORDER_IDBIZ_STATUSSPEEDDIRECTIONENCRYPTLATITUDELONGITUDEPOSITION_TIME
887320006d282be70d06881a7513b69fcaa600-18.092.0124.503584118.1572802019/5/31 20:33:05
317690006d282be70d06881a7513b69fcaa600-18.085.0124.477930118.0830002019/5/31 23:17:35
580980006d282be70d06881a7513b69fcaa600-15.0267.0124.474464118.0827872019/5/31 23:20:18
388910006d282be70d06881a7513b69fcaa600-18.0267.0124.474428118.0805212019/5/31 23:20:49
232890006d282be70d06881a7513b69fcaa600-118.0298.0124.493311118.0844572019/5/31 23:25:58

网约车订单数据读取

wycorder2019 = pd.read_csv(INPUT_PATH + 'wycOrder20190531.csv', nrows=MAX_ROWS,
                        dtype={
                            'DEP_LONGITUDE': np.float32,
                            'DEP_LATITUDE': np.float32,
                            'DEST_LONGITUDE': np.float32,
                            'DEST_LATITUDE': np.float32,
                        })
wycorder2019 = wycorder2019.rename(columns={'CAR_NO':'CARNO'})
wycorder2019.sort_values(by=['CARNO','DEP_TIME'], inplace=True)
wycorder2019.head() 
ORDER_IDON_AREACARNOBOOK_DEP_TIMEWAIT_TIMEDEP_LONGITUDEDEP_LATITUDEDEP_TIMEDEST_LONGITUDEDEST_LATITUDEDEST_TIMEDRIVE_MILEDRIVE_TIMEWAIT_MILEORDER_MATCH_TIME
69056P190531163151202000350200000ec98fb3522d1d3f3ffd9f43c6617b201905311631000.0118.18385324.52720120190531163743118.16458124.539051201905311644413.84180.020190531185034
33401P190531190532186001350200000ec98fb3522d1d3f3ffd9f43c6617b201905311905000.0118.08731124.44006720190531191327118.08644124.468336201905311930025.29950.020190531214125
36568B190531193036068000350200000ec98fb3522d1d3f3ffd9f43c6617b201905311930360.0118.08208524.46112120190531194114118.11987324.477873201905311957305.49760.020190531220126
58463B190531195846071000350200000ec98fb3522d1d3f3ffd9f43c6617b201905311958460.0118.11783624.47655720190531200107118.15564024.508106201905312019398.011120.120190531222130
5912P190531202421202000350200000ec98fb3522d1d3f3ffd9f43c6617b201905312024000.0118.15055824.50978320190531202734118.15332024.479868201905312038544.86800.020190531230145

数据统计

对5月31日的数据进行统计

# 巡游车 GPS 数据
taxigps2019 = pd.read_csv(INPUT_PATH + 'taxiGps20190531.csv',
                         dtype = {
                             'DRIVING_DIRECTION': np.uint16,
                             'OPERATING_STATUS': np.uint8,
                             'LONGITUDE': np.float32,
                             'LATITUDE': np.float32,
                             'GPS_SPEED': np.float16 
                         })
taxigps2019 = taxigps2019[taxigps2019.columns[::-1]] # 把列的顺序反过来
taxigps2019.sort_values(by=['CARNO','GPS_TIME'], inplace=True) # 根据车号以及GPS_TIME进行排序
taxigps2019.reset_index(inplace=True, drop=True)

# 巡游车订单数据
taxiorder2019 = pd.read_csv(INPUT_PATH + 'taxiOrder20190531.csv',
                           dtype = {
                               'GETON_LONGITUDE': np.float32,
                               'GETON_LATITUDE': np.float32,
                               'GETOFF_LONGITUDE': np.float32,
                               'GETOFF_LATITUDE': np.float32,
                               'PASS_MILE': np.float16,
                               'NOPASS_MILE': np.float16,
                               'WAITING_TIME': np.float16
                           })
taxiorder2019 = taxiorder2019.rename(columns={'CAR_NO':'CARNO'})
taxiorder2019.sort_values(by=['CARNO','GETON_DATE'], inplace=True) # 根据车号和上车时间进行排序
taxiorder2019.reset_index(inplace=True, drop=True)

# 网约车 GPS 数据
wycgps2019 = pd.read_csv(INPUT_PATH + 'wycGps20190531.csv',
                        dtype={
                            'LONGITUDE': np.float32,
                            'LATITUDE': np.float32,
                            'SPEED': np.float16
                        })
wycgps2019 = wycgps2019.rename(columns={'CAR_NO':'CARNO'})
wycgps2019 = wycgps2019[wycgps2019.columns[::-1]]
wycgps2019.sort_values(by=['CARNO','POSITION_TIME'], inplace=True)
wycgps2019['BIZ_STATUS'] = wycgps2019['BIZ_STATUS'].fillna(-1).astype(np.int8)
wycgps2019['ENCRYPT'] = wycgps2019['ENCRYPT'].fillna(-1).astype(np.int8)

# 网约车订单数据
wycorder2019 = pd.read_csv(INPUT_PATH + 'wycOrder20190531.csv',
                        dtype={
                            'DEP_LONGITUDE': np.float32,
                            'DEP_LATITUDE': np.float32,
                            'DEST_LONGITUDE': np.float32,
                            'DEST_LATITUDE': np.float32,
                        })
wycorder2019 = wycorder2019.rename(columns={'CAR_NO':'CARNO'})
wycorder2019.sort_values(by=['CARNO','DEP_TIME'], inplace=True)
  • 有多少辆巡游车:
taxigps2019['CARNO'].nunique()  # 获取唯一值的统计次数
6768
  • 有多少辆网约车:
wycgps2019['CARNO'].nunique()  # 获取唯一值的统计次数
27849
  • 巡游车平均GPS速度:
np.clip(taxigps2019['GPS_SPEED'].values, 0, 150).mean() 
# clip 将数组中的元素限制在 [a_min, a_max],大于 a_max 的就使得它等于 a_max,小于 a_min 的就使得它等于 a_min
17.42
  • 巡游车运营状态统计:
taxigps2019['OPERATING_STATUS'].value_counts()
# 查看表格的某列有多少个不同的值,并计算每个值在该列出现的次数
1    9540708
6    6916642
8     371497
Name: OPERATING_STATUS, dtype: int64
  • 查看某辆巡游车的数据:
taxigps2019[taxigps2019['CARNO'] == '0006d282be70d06881a7513b69fcaa60'].head()
CARNOLATITUDELONGITUDEGPS_TIMEDRIVING_DIRECTIONGPS_SPEEDOPERATING_STATUS
00006d282be70d06881a7513b69fcaa6024.506195118.1289292019/5/31 10:00:11129.2031251
10006d282be70d06881a7513b69fcaa6024.506210118.1289372019/5/31 10:00:26100.0000001
20006d282be70d06881a7513b69fcaa6024.506210118.1289372019/5/31 10:00:41100.0000001
30006d282be70d06881a7513b69fcaa6024.506210118.1289372019/5/31 10:00:56100.0000001
40006d282be70d06881a7513b69fcaa6024.506210118.1289372019/5/31 10:01:11100.0000001
  • 统计某个运行方向的车辆:
len(taxigps2019[taxigps2019['DRIVING_DIRECTION'] == 10]['CARNO'].unique())
6268
  • 统计最多的GPS小时(大部分数据都是几点):
taxigps2019['GPS_TIME'] = pd.to_datetime(taxigps2019['GPS_TIME'])
taxigps2019['GPS_TIME'].dt.hour.value_counts()  
23    1059242
22    1054752
10    1054140
9     1053138
21    1047899
20    1042931
8     1042160
19    1039729
17    1038851
18    1033548
7     1002225
6      903491
2      893999
4      859305
3      852674
5      816163
1      457019
11     439676
16     131282
0        2273
15       1394
14       1285
13        851
12        820
Name: GPS_TIME, dtype: int64
  • 统计某个巡游车的在一天的载客时间:

    ∑ \sum 下车时间-上车时间

temp = taxiorder2019[taxiorder2019['CARNO'] == '0006d282be70d06881a7513b69fcaa60']  
dtime = pd.to_datetime(temp['GETOFF_DATE'])-pd.to_datetime(temp['GETON_DATE'])
dtime.sum()
Timedelta('0 days 11:04:00')
  • 统计某个巡游车的在一天的有效运行时间:(以分钟为单位)
temp = taxigps2019[taxigps2019['CARNO'] == '0006d282be70d06881a7513b69fcaa60'] 
run_time = temp['GPS_TIME'].dt.hour.astype(str) +temp['GPS_TIME'].dt.minute.astype(str) 
run_time.nunique()
992
  • 统计某个巡游车的行驶距离:

    平均 GPS 速度 * 行驶时间

temp = taxigps2019[taxigps2019['CARNO'] == '0006d282be70d06881a7513b69fcaa60']
mean_speed  = np.clip(temp['GPS_SPEED'].values, 0, 150).mean() 
run_time = max(temp['GPS_TIME'])-min(temp['GPS_TIME'])
(run_time/ np.timedelta64(1, 'h')) * mean_speed 
389.4881163194445
  • 统计网约车订单数据上车经纬度的最大最小值:
print('上车经度最大值',end=': ')
print(taxiorder2019['GETON_LONGITUDE'].max())  
print('上车经度最小值',end=': ')
print(taxiorder2019[taxiorder2019['GETON_LONGITUDE'] > 0]['GETON_LONGITUDE'].min())  
print('上车纬度最大值',end=': ')
print(taxiorder2019['GETON_LATITUDE'].max())  
print('上车纬度最小值',end=': ')
print(taxiorder2019[taxiorder2019['GETON_LATITUDE'] > 0]['GETON_LATITUDE'].min())  
print('下车经度最大值',end=': ')
print(taxiorder2019['GETOFF_LONGITUDE'].max())  
print('下车经度最小值',end=': ')
print(taxiorder2019[taxiorder2019['GETOFF_LONGITUDE'] > 0]['GETOFF_LONGITUDE'].min())  
print('下车纬度最大值',end=': ')
print(taxiorder2019['GETOFF_LATITUDE'].max())  
print('下车纬度最小值',end=': ')
print(taxiorder2019[taxiorder2019['GETOFF_LATITUDE'] > 0]['GETOFF_LATITUDE'].min())  
上车经度最大值: 126.43206
上车经度最小值: 108.93546
上车纬度最大值: 34.656197
上车纬度最小值: 12.239963
下车经度最大值: 126.995125
下车经度最小值: 100.401085
下车纬度最大值: 34.69632
下车纬度最小值: 12.239963
  • 统计网约车订单数据集在中下车经纬度最常见的位置(经度+维度,各保留三位有效数字组合得到具体位置):
f = lambda x:str(round(x,3))
taxiorder2019['GETOFF_POSITION'] = taxiorder2019['GETOFF_LONGITUDE'].apply(f)+','+taxiorder2019['GETOFF_LATITUDE'].apply(f)
taxiorder2019['GETOFF_POSITION'].value_counts() 
0.0,0.0           3340
118.144,24.547    1860
118.07,24.638     1786
118.127,24.537    1731
118.116,24.481    1437
                  ... 
118.114,24.678       1
118.023,24.47        1
118.123,24.524       1
118.161,24.721       1
117.98,24.477        1
Name: GETOFF_POSITION, Length: 13267, dtype: int64

GPS 定位经纬度都为0的点是异常值(对应真实的物理坐标在非洲),可能是由于没有开启GPS定位功能、系统故障或者是没有网络造成的。

  • 找到数据中的异常值:

    切比雪夫定理:可用于判断异常值

    约 75% 的数据,位于平均数两个标准差范围内

    约 89% 的数据,位于平均数三个标准差范围内

    约 96% 的数据,位于平均数五个标准差范围内

  • 对于异常值可以利用插值的方法重新赋值

lb = taxiorder2019['GETOFF_LONGITUDE'].mean()-5*taxiorder2019['GETOFF_LONGITUDE'].std()  
ub = taxiorder2019['GETOFF_LONGITUDE'].mean()+5*taxiorder2019['GETOFF_LONGITUDE'].std()  
# 找到异常值
taxiorder2019[(taxiorder2019['GETOFF_LONGITUDE']>ub) | (taxiorder2019['GETOFF_LONGITUDE']<lb)]['GETOFF_LONGITUDE'] = np.nan 
# 进行插值
taxiorder2019['GETOFF_LONGITUDE'] = taxiorder2019['GETOFF_LONGITUDE'].interpolate()
;