Bootstrap

yolov8实战分割数据集训练与实时检测

提前说明一下,我这里使用的时在windows10下的pycharm中的conda虚拟环境。

记得提前下载yolov8的文件,链接:GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite

一、创建新文件

1.1复制coco8-seg.yaml文件并重命名

如下图为我的文件内容,mydata文件下为我的数据集

path: D:\yolo_8\ultralytics-main\mydata # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)

# Classes
names:
  0: mouse

1.2复制yolov8-seg.yaml文件并重命名

注意只需要更改nc : 1(该为自己的标签种类数量,我只有一个所以为1)

二、训练文件的编写(train-seg.py)

这里我参考了这个博客的代码:http://t.csdnimg.cn/NlvEl

from ultralytics import YOLO

if __name__ == '__main__':
    # 加载模型
    #model = YOLO(r'D:\yolo_8\ultralytics-main\ultralytics\cfg\models\v8\myyolov8-seg.yaml')  # 不使用预训练权重训练
    model = YOLO(r'D:\yolo_8\ultralytics-main\ultralytics\cfg\models\v8\myyolov8-seg.yaml').load("yolov8n-seg.pt")  # 使用预训练权重训练
    # 训练参数 ----------------------------------------------------------------------------------------------
    model.train(
        data=r'D:\yolo_8\ultralytics-main\ultralytics\cfg\datasets\mycoco8-seg.yaml',
        epochs=500,  # (int) 训练的周期数
        patience=50,  # (int) 等待无明显改善以进行早期停止的周期数
        batch=8,  # (int) 每批次的图像数量(-1 为自动批处理)
        imgsz=640,  # (int) 输入图像的大小,整数或w,h
        save=True,  # (bool) 保存训练检查点和预测结果
        save_period=-1,  # (int) 每x周期保存检查点(如果小于1则禁用)
        cache=False,  # (bool) True/ram、磁盘或False。使用缓存加载数据
        device='0',  # (int | str | list, optional) 运行的设备,例如 cuda device=0 或 device=0,1,2,3 或 device=cpu
        workers=8,  # (int) 数据加载的工作线程数(每个DDP进程)
        project='runs/train',  # (str, optional) 项目名称
        name='exp',  # (str, optional) 实验名称,结果保存在'project/name'目录下
        exist_ok=False,  # (bool) 是否覆盖现有实验
        pretrained=True,  # (bool | str) 是否使用预训练模型(bool),或从中加载权重的模型(str)
        optimizer='SGD',  # (str) 要使用的优化器,选择=[SGD,Adam,Adamax,AdamW,NAdam,RAdam,RMSProp,auto]
        verbose=True,  # (bool) 是否打印详细输出
        seed=0,  # (int) 用于可重复性的随机种子
        deterministic=True,  # (bool) 是否启用确定性模式
        single_cls=False,  # (bool) 将多类数据训练为单类
        rect=False,  # (bool) 如果mode='train',则进行矩形训练,如果mode='val',则进行矩形验证
        cos_lr=False,  # (bool) 使用余弦学习率调度器
        close_mosaic=0,  # (int) 在最后几个周期禁用马赛克增强
        resume=False,  # (bool) 从上一个检查点恢复训练
        amp=True,  # (bool) 自动混合精度(AMP)训练,选择=[True, False],True运行AMP检查
        fraction=1.0,  # (float) 要训练的数据集分数(默认为1.0,训练集中的所有图像)
        profile=False,  # (bool) 在训练期间为记录器启用ONNX和TensorRT速度
        freeze= None,  # (int | list, 可选) 在训练期间冻结前 n 层,或冻结层索引列表。
        # 分割
        overlap_mask=True,  # (bool) 训练期间是否应重叠掩码(仅适用于分割训练)
        mask_ratio=4,  # (int) 掩码降采样比例(仅适用于分割训练)
        # 分类
        dropout=0.0,  # (float) 使用丢弃正则化(仅适用于分类训练)
        # 超参数 ----------------------------------------------------------------------------------------------
        lr0=0.01,  # (float) 初始学习率(例如,SGD=1E-2,Adam=1E-3)
        lrf=0.01,  # (float) 最终学习率(lr0 * lrf)
        momentum=0.937,  # (float) SGD动量/Adam beta1
        weight_decay=0.0005,  # (float) 优化器权重衰减 5e-4
        warmup_epochs=3.0,  # (float) 预热周期(分数可用)
        warmup_momentum=0.8,  # (float) 预热初始动量
        warmup_bias_lr=0.1,  # (float) 预热初始偏置学习率
        box=7.5,  # (float) 盒损失增益
        cls=0.5,  # (float) 类别损失增益(与像素比例)
        dfl=1.5,  # (float) dfl损失增益
        pose=12.0,  # (float) 姿势损失增益
        kobj=1.0,  # (float) 关键点对象损失增益
        label_smoothing=0.0,  # (float) 标签平滑(分数)
        nbs=64,  # (int) 名义批量大小
        hsv_h=0.015,  # (float) 图像HSV-Hue增强(分数)
        hsv_s=0.7,  # (float) 图像HSV-Saturation增强(分数)
        hsv_v=0.4,  # (float) 图像HSV-Value增强(分数)
        degrees=0.0,  # (float) 图像旋转(+/- deg)
        translate=0.1,  # (float) 图像平移(+/- 分数)
        scale=0.5,  # (float) 图像缩放(+/- 增益)
        shear=0.0,  # (float) 图像剪切(+/- deg)
        perspective=0.0,  # (float) 图像透视(+/- 分数),范围为0-0.001
        flipud=0.0,  # (float) 图像上下翻转(概率)
        fliplr=0.5,  # (float) 图像左右翻转(概率)
        mosaic=1.0,  # (float) 图像马赛克(概率)
        mixup=0.0,  # (float) 图像混合(概率)
        copy_paste=0.0,  # (float) 分割复制-粘贴(概率)
    )


注意model和data的路径改为自己命名的文件的绝对路径

三、开始训练

运行python训练文件,出现下图就是训练开始了

;