IPv4数据包头格式
TCP/IP协议定义了一个在因特网上传输的包,称为IP数据报(IP Datagram)。这是一个与硬件无关的虚拟包, 由首部和数据两部分组成,其格式如图所示。首部的前一部分是固定长度,共20字节,是所有IP数据报必须具有的。在首部的固定部分的后面是一些可选字段,其长度是可变的。首部中的源地址和目的地址都是IPv4协议地址
1、IP数据报首部的固定部分中的各字段
(1)版本 占4位,指IP协议的版本。通信双方使用的IP协议版本必须一致。目前广泛使用的IP协议版本号为4(即IPv4)。
(2)首部长度 占4位,可表示的最大十进制数值是15。请注意,这个字段所表示数的单位是32位字长(1个32位字长是4字节),因此,当IP的首部长度为1111时(即十进制的15),首部长度就达到60字节。当IP分组的首部长度不是4字节的整数倍时,必须利用最后的填充字段加以填充。因此数据部分永远在4字节的整数倍开始,这样在实现IP协议时较为方便。首部长度限制为60 字节的缺点是有时可能不够用。但这样做是希望用户尽量减少开销。最常用的首部长度就是20字节(即首部长度为0101),这时不使用任何选项。
(#我们一般看到的版本和首部长度两个字段是十六进制45,就是版本号version=4,headlength=5,也就是首部长度是60个字节)
(3)区分服务 占8位,用来获得更好的服务。这个字段在旧标准中叫做服务类型,但实际上一直没有被使用过。1998年IETF把这个字段改名为区分服务DS(Differentiated Services)。只有在使用区分服务时,这个字段才起作用。
(4)总长度 总长度指首部和数据之和的长度,单位为字节。总长度字段为16位,因此数据报的最大长度为216-1=65535字节。
#可以看这个以太网frame总长为336字节,而IP数据包Total length=322,336-322=14正好是Ethernet包头的长度,所以就可以看出这IP数据包总长度一值就是除去Ethernet头的剩余长度,也就是IP包头加数据的长度。
在IP层下面的每一种数据链路层都有自己的帧格式,其中包括帧格式中的数据字段的最大长度,这称为最大传送单元MTU(Maximum Transfer Unit)。当一个数据报封装成链路层的帧时,此数据报的总长度(即首部加上数据部分)一定不能超过下面的数据链路层的MTU值。
(5)标识(identification) 占16位。IP软件在存储器中维持一个计数器,每产生一个数据报,计数器就加1,并将此值赋给标识字段。但这个“标识”并不是序号,因为IP是无连接服务,数据报不存在按序接收的问题。当数据报由于长度超过网络的MTU而必须分片时,这个标识字段的值就被复制到所有的数据报的标识字段中。相同的标识字段的值使分片后的各数据报片最后能正确地重装成为原来的数据报。
(6)标志(flag) 占3位,但目前只有2位有意义。
● 标志字段中的最低位记为MF(More Fragment)。MF=1即表示后面“还有分片”的数据报。MF=0表示这已是若干数据报片中的最后一个。
● 标志字段中间的一位记为DF(Don’t Fragment),意思是“不能分片”。只有当DF=0时才允许分片。
(7)片偏移 占13位。片偏移指出:较长的分组在分片后,某片在原分组中的相对位置。也就是说,相对用户数据字段的起点,该片从何处开始。片偏移以8个字节为偏移单位。这就是说,每个分片的长度一定是8字节(64位)的整数倍。
(8)生存时间 占8位,生存时间字段常用的的英文缩写是TTL(Time To Live),表明是数据报在网络中的寿命。由发出数据报的源点设置这个字段。其目的是防止无法交付的数据报无限制地在因特网中兜圈子,因而白白消耗网络资源。最初的设计是以秒作为TTL的单位。每经过一个路由器时,就把TTL减去数据报在路由器消耗掉的一段时间。若数据报在路由器消耗的时间小于1秒,就把 TTL值减1。当TTL值为0时,就丢弃这个数据报。
#TTL通常是32或者64,scapy中默认是64
(9)协议 占8位,协议字段指出此数据报携带的数据是使用何种协议,以便使目的主机的IP层知道应将数据部分上交给哪个处理过程。(在scapy中,下层的这个protocol一般可以从上曾继承而来,自动填充,我们一般可以省略不填此项)
(10)首部检验和 占16位。这个字段只检验数据报的首部,但不包括数据部分。这是因为数据报每经过一个路由器,路由器都要重新计算一下首部检验和(一些字段,如生存时间、标志、片偏移等都可能发生变化)。不检验数据部分可减少计算的工作量。
(11)源地址 占32位。
(12)目的地址 占32位。
2、IP数据报首部的可变部分
IP首部的可变部分就是一个可选字段。选项字段用来支持排错、测量以及安全等措施,内容很丰富。此字段的长度可变,从1个字节到40个字节不等,取决于所选择的项目。某些选项项目只需要1个字节,它只包括1个字节的选项代码。但还有些选项需要多个字节,这些选项一个个拼接起来,中间不需要有分隔符,最后用全0的填充字段补齐成为4字节的整数倍。
增加首部的可变部分是为了增加IP数据报的功能,但这同时也使得IP数据报的首部长度成为可变的。这就增加了每一个路由器处理数据报的开销。实际上这些选项很少被使用。新的IP版本IPv6就将IP数据报的首部长度做成固定的。
目前,这些任选项定义如下:
(1)安全和处理限制(用于军事领域)
(2)记录路径(让每个路由器都记下它的IP地址)
(3)时间戳(让每个路由器都记下它的IP地址和时间)
(4)宽松的源站路由(为数据报指定一系列必须经过的IP地址)
(5)严格的源站路由(与宽松的源站路由类似,但是要求只能经过指定的这些地址,不能经过其他的地址)
这些选项很少被使用,并非所有主机和路由器都支持这些选项。
附:scapy中的IP层实现:各个参数对应的非常清楚,我们经常关心的可能是ttl,proto,src,dst等等
>>> ls(IP)
version : BitField = (4)
ihl : BitField = (None)
tos : XByteField = (0)
len : ShortField = (None)
id : ShortField = (1)
flags : FlagsField = (0)
frag : BitField = (0)
ttl : ByteField = (64)
proto : ByteEnumField = (0)
chksum : XShortField = (None)
src : Emph = (None)
dst : Emph = ('127.0.0.1')
options : IPoptionsField = ('')
>>> IP().show()
###[ IP ]###
version= 4
ihl= None
tos= 0x0
len= None
id= 1
flags=
frag= 0
ttl= 64
proto= ip
chksum= 0x0
src= 127.0.0.1
dst= 127.0.0.1
options= ''
>>>
IPv6数据包头格式
IPv6数据包头格式在图2-5所示,在2-5中显示的内容同我们早先章节里面的ipv4 包头有一些相似之处,又有一些明显和细微的差别。
Figure 2-5. The IPv6 packet header.
Version 和ipv4包头中的一样,4个bit区域表示ip的版本。 当然,在这里使用二进制0110表示版本6。
Traffic Class是一个8位bit的区域,同ipv4中的tos区域一样。 但是在这些年中随着TOS区域的进化,这个区域也可以用来被 Differentiated Class of Service (DiffServ)使用。 但是尽管这里这样的标识仍然符合老的Tos的格式,只不过Traffic Class这个名字更符合当前的应用。
Flow Label流量标签是在ipv6中独有的区域。 这个20个bit的区域设计的目的在于可以给一些特殊的数据做标记。也就是说尽管数据包并非是从原来的源发到目的,但是仍然包含原有的源和目的的应用。 区分数据流有很多好处,可以确保不同类别服务的处理方式得以区分,在数据流经多个路径的负载均衡时,在同一个数据流的数据包将使用经由同一个路径转发,从而避免了数据包可能继续查找路径的现象。 典型的flow(更加精确一点的说法是微流)就是在源地址和目的地址上加一个团体的源地址和目的地址。
如果使用定义源和目的端口号,路由器必须识别ip包头还要进一步识别tcp或者udp(或者其他传输层协议)的头,这样就增加了转发进程的复杂性,可能会影响路由器的处理。 因为出现扩展包头(下一段介绍),所以在ipv6数据包中查找传输层协议的头就成为一个特殊的问题。 支持ipv6的路由器必须从按照数据包格式的顺序从头到位查找,可能会经过很多扩展包头再会找到传输层地址(这样的话影响查找时间)。
如果在数据包发起是适当的加入流量标签,路由器更比查找数据包头更容易辨识数据流。 然而,在本书书写时,如何使用流量标签区域的完全详细文档仍在讨论中,所以当前路由器读取数据时忽略这个区域。 尽管如此,这种设计仍然确保ipv6在提供类似voip这样的QOS服务功能时要优于ipv4。
负载长度Payload Length 定义了负载的长度,数据包封装的字节数。 等同与单元一“TCP/IP 回顾”,在ipv4包头中的头长度,因为这是一个可选和填充字段,所以大小是可变的。 但是,查找ipv4中的负载长度字段,这个值必须从总长度中减少。(也就是ipv4中计算的是除去负载长度字段后的大小)。 在ipv6头长度中,从另一方面说,这个长度固定为40byte,这个长度足以从负载的开始查找到结尾。
注意ipv4的头长度字段是16bit,但是ipv6的负载长度字段是20bit。 这里隐含的意思在于因为ipv6具有一个很长的负载(有1,048,575 字节, 相对与 Ipv4是65,535)在这个区域定义,ipv6数据包本身理论上就会携带一个很大的负载。
Next Header下一个包头,定义的是ipv6数据包的包头之后是哪一个头。 这个区域非常类似与ipv4包头中的协议字段,实际上使用的目的就是标识在下一头是一个上层协议的头(就是标识上层协议)。 同ipv4这个区域类似,这个区域也是8个bit。 但是在ipv6中,在紧随在数据包头的不一定是上层协议的头(ipv4里面的数据包头后面跟的就是上层协议的头),有可能是扩展包头(再次出现这个名词,在下一段中描述)。 所以下一个头区域的命名具有很大范围的意义。
Hop limit跳数限制,在长度(8bit)和功能上都和ipv4的Time to Live (TTL)生存时间区域类似。 在你读第一章的时候,定义TTL的起初意图在与路由器转发排队的数据包的时候减少他们的时间(防止数据包长生不老),但是这个功能始终没有实现。 取而代之的是路由器将TTL值减一不考虑排队的数据包的长度(在现代网络中,很少见一个任何一个数据包会排队等待大于一秒。) 所以,TTL现在经常表示的是数据包从他的路径到达目的网络的最大路由器跳数。 如果TTL值减少到0,数据包被丢弃。 Hop limit也是同样的定义,但是命名却更加贴近本身的功能。
源和目的地址等同与ipv4的源地址和目的地址区域,但是注意这两个区域都是128bit长,为了符合ipv6的地址长度。
注意ipv6包头中取消了原来ipv4包头中的校验和区域。 现在的网络传输介质都增加了传输的可靠性(无线可能是一个特例),并且事实上上层协议常常使用自己的错误检测和修复机制,Ipv6包头中加入校验意义不打,所以就被将它剔除了。
来源: http://blog.sina.com.cn/s/blog_4b5039210100fc66.html