ICLR 2025将在2025年4月24日到28日于新加坡举行。ICLR 2025共有11,565篇投稿,录取率32.08%。本文总结了2025 ICLR上有关时间序列(time series)相关论文。如有疏漏,欢迎大家补充。
时间序列Topic:预测,插补,分类,生成,因果分析,异常检测,LLM以及基础模型等内容。总计42篇。其中1-4为Oral,5,6为Spotlight
[Oral] TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis
[Oral] Root Cause Analysis of Anomalies in Multivariate Time Series through Granger Causal Discovery
[Oral] Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
[Oral] On the Identification of Temporal Causal Representation with Instantaneous Dependence
[Spotlight] CausalRivers - Scaling up benchmarking of causal discovery for real-world time-series
[Spotlight] Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts
Can LLMs Understand Time Series Anomalies?
In-context Time Series Predictor
Optimal Transport for Time Series Imputation
TimeInf: Time Series Data Contribution via Influence Functionn
Compositional simulation-based inference for time series
DyCAST: Learning Dynamic Causal Structure from Time Series
Timer-XL: Long-Context Transformers for Unified Time Series Forecasting
PPT: Patch Order Do Matters In Time Series Pretext Task
Diffusion Transformers for Tabular Data Time Series Generation
Going Beyond Static: Understanding Shifts with Time-Series Attribution
Kernel-based Optimally Weighted Conformal Time-Series Prediction
Learn hybrid prototypes for multivariate time series anomaly detection
Investigating Pattern Neurons in Urban Time Series Forecasting
Diffusion-based Decoupled Deterministic and Uncertain Framework for Probabilistic Multivariate Time Series Forecasting
Label Correlation Biases Direct Time Series Forecast
Fast and Slow Streams for Online Time Series Forecasting Without Information Leakage
Locally Connected Echo State Networks for Time Series Forecasting
Shifting the Paradigm: A Diffeomorphism Between Time Series Data Manifolds for Achieving Shift-Invariancy in Deep Learning
Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement
Physiome-ODE: A Benchmark for Irregularly Sampled Multivariate Time-Series Forecasting Based on Biological ODEs
Towards Neural Scaling Laws for Time Series Foundation Models
CATCH: Channel-Aware Multivariate Time Series Anomaly Detection via Frequency Patching
CoMRes: Semi-Supervised Time Series Forecasting Utilizing Consensus Promotion of Multi-Resolution
Context-Alignment: Activating and Enhancing LLMs Capabilities in Time Series
TVNet: A Novel Time Series Analysis Method Based on Dynamic Convolution and 3D-Variation
Multi-Resolution Decomposable Diffusion Model for Non-Stationary Time Series Anomaly Detection
KooNPro: A Variance-Aware Koopman Probabilistic Model Enhanced by Neural Processes for Time Series Forecasting
Towards a General Time Series Anomaly Detector with Adaptive Bottlenecks and Dual Adversarial Decoders
TimeKAN: KAN-based Frequency Decomposition Learning Architecture for Long-term Time Series Forecasting
S4M: S4 for multivariate time series forecasting with Missing values
A Simple Baseline for Multivariate Time Series Forecasting
Shedding Light on Time Series Classification using Interpretability Gated Networks
Flow Matching with Gaussian Process Priors for Probabilistic Time Series Forecasting
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
TS-LIF: A Temporal Segment Spiking Neuron Network for Time Series Forecasting
Quantifying Past Error Matters: Conformal Inference for Time Series
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
[Oral] 1 TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis
链接:https://openreview.net/forum?id=1CLzLXSFNn
作者:Shiyu Wang, Jiawei LI, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Ju Shengtong, Zhixuan Chu, Ming Jin
关键词:多任务(预测,分类,插补,异常检测),基础模型
TL; DR:TimeMixer++ 是一种时间序列模式机器,它采用多尺度和多分辨率模式提取,在 8 种不同的分析任务中提供 SOTA 性能,包括预测、分类、异常检测和插补。
分数:6810
[Oral]2 Root Cause Analysis of Anomalies in Multivariate Time Series through Granger Causal Discovery
链接:https://openreview.net/forum?id=k38Th3x4d9
作者:Xiao Han, Saima Absar, Lu Zhang, Shuhan Yuan
关键词:因果发现, 格兰杰因果
分数:88888
[Oral] 3 Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
链接:https://openreview.net/forum?id=8zJRon6k5v
作者:Byoungwoo Park, Hyungi Lee, Juho Lee
关键词:随机最优控制,变分推断,不规则时间序列,状态空间模型, 不规则时间序列
TL; DR:提出了一个多边际 Doob 的 -transform 用于不规则的时间序列和变分推理,并使用随机最优控制来近似它。
分数:8888
[Oral] 4 On the Identification of Temporal Causal Representation with Instantaneous Dependence
链接:https://openreview.net/forum?id=2efNHgYRvM
作者:Zijian Li, Yifan Shen, Kaitao Zheng, Ruichu Cai, Xiangchen Song, Mingming Gong, Guangyi Chen, Kun Zhang
关键词:因果表示学习, Instantaneous Dependency, Identification
分数:888
[Spotlight] 5 CausalRivers - Scaling up benchmarking of causal discovery for real-world time-series
链接:https://openreview.net/forum?id=wmV4cIbgl6
作者:Gideon Stein, Maha Shadaydeh, Jan Blunk, Niklas Penzel, Joachim Denzler
关键词:因果发现, Benchmarking
TL; DR:迄今为止最大的真实世界因果发现基准测试,包括高分辨率 ts 和具有 1000 多个节点的真实因果图。
分数:888
[Spotlight] 6 Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts
链接:https://openreview.net/forum?id=e1wDDFmlVu
作者:Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, Ming Jin
关键词:预测,基础模型,混合专家系统
TL; DR:Time-MoE 是一系列具有 mixture-of-experts 架构的时间序列基础模型。Time-MoE 首次扩展到 24 亿个参数,从而显著提高了零镜头/全镜头预测性能。
分数:688
7 Can LLMs Understand Time Series Anomalies?
链接:https://openreview.net/forum?id=LGafQ1g2D2
作者:Zihao Zhou, Rose Yu
关键词:大语言模型,异常检测,多模态学习
TL; DR:本研究挑战了关于大型语言模型在时间序列异常检测方面能力的常见假设。
分数:63665
8 In-context Time Series Predictor
链接:https://openreview.net/forum?id=dCcY2pyNIO
作者:Jiecheng Lu, Yan Sun, Shihao Yang
关键词:预测,上下文学习
分数:3668
9 Optimal Transport for Time Series Imputation
链接:https://openreview.net/forum?id=xPTzjpIQNp
作者:Hao Wang, zhengnan li, Haoxuan Li, Xu Chen, Mingming Gong, BinChen, Zhichao Chen
关键词:插补,最优传输
分数:588
10 TimeInf: Time Series Data Contribution via Influence Functions
链接:https://openreview.net/forum?id=Vz0CWFMPUe
作者:Yizi Zhang, Jingyan Shen, Xiaoxue Xiong, Yongchan Kwon
关键词:异常检测
分数:56666
11 Compositional simulation-based inference for time series
链接:https://openreview.net/forum?id=uClUUJk05H
作者:Manuel Gloeckler, Shoji Toyota, Kenji Fukumizu, Jakob H. Macke
关键词:Simulation-based inference, Bayesian inference, time series, markovian simulators, Amortized Bayesian inference
分数:566668
12 DyCAST: Learning Dynamic Causal Structure from Time Series
链接:https://openreview.net/forum?id=WjDjem8mWE
作者:Yue Cheng, Bochen Lyu, Weiwei Xing, Zhanxing Zhu
关键词:动态因果发现;时间序列
分数:3668
13 Timer-XL: Long-Context Transformers for Unified Time Series Forecasting
链接:https://openreview.net/forum?id=KMCJXjlDDr
作者:Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, Mingsheng Long
关键词:预测,Transformer
TL; DR:将 next token prediction 扩展到多变量时间序列,为各种预测场景提供了一个生成式 Transformer,它在各种基准中实现了 SOTA,并展示了作为 one-for-all 预测器的强大实力。
分数:656
14 PPT: Patch Order Do Matters In Time Series Pretext Task
链接:https://openreview.net/forum?id=7zwIEbSTDy
作者:Jaeho Kim, Kwangryeol Park, Sukmin Yun, Seulki Lee
关键词:分类,自监督
TL; DR:用于时间序列分类的补丁顺序感知自监督学习方法
分数:6683
15 Diffusion Transformers for Tabular Data Time Series Generation
链接:https://openreview.net/forum?id=bhOysNJvWm
作者:Fabrizio Garuti, Enver Sangineto, Simone Luetto, Lorenzo Forni, Rita Cucchiara
关键词:表格数据生成,扩散模型
分数:665
16 Going Beyond Static: Understanding Shifts with Time-Series Attribution
链接:https://openreview.net/forum?id=XQlccqJpCC
作者:Jiashuo Liu, Nabeel Seedat, Peng Cui, Mihaela van der Schaar
关键词:分布变化、性能下降、归因
TL; DR:提出了一个时间序列偏移归因框架,该框架以理论分析和实证结果的支持,将各种类型偏移的性能下降详细归因于每个时间数据属性。
分数:5886
17 Kernel-based Optimally Weighted Conformal Time-Series Prediction
链接:https://openreview.net/forum?id=oP7arLOWix
作者:Jonghyeok Lee, Chen Xu, Yao Xie
关键词:共形预测,非参数核回归
TL; DR:一种通过非参数核回归对时间序列进行顺序共形预测方法,具有严格的理论分析和强大的实证性能。
分数:6666
18 Learn hybrid prototypes for multivariate time series anomaly detection
链接:https://openreview.net/forum?id=8TBGdH3t6a
作者:Ke-Yuan Shen
关键词:原型,异常检测
TL; DR:本文提出了一种基于重建的 MTSAD 混合原型学习模型,以对抗过度泛化。
分数:66556
19 Investigating Pattern Neurons in Urban Time Series Forecasting
链接:https://openreview.net/forum?id=a9vey6B54y
作者:Chengxin Wang, Yiran Zhao, Shaofeng Cai, Gary Tan
关键词:时空预测(更像是),neuron detection
分数:6666
20 Diffusion-based Decoupled Deterministic and Uncertain Framework for Probabilistic Multivariate Time Series Forecasting
链接:https://openreview.net/forum?id=HdUkF1Qk7g
作者:Qi Li, Zhenyu Zhang, Lei Yao, Zhaoxia Li, Tianyi Zhong, Yong Zhang
关键词:长时预测,扩散模型
分数:6666
21 Label Correlation Biases Direct Time Series Forecast
链接:https://openreview.net/forum?id=4A9IdSa1ul
作者:Hao Wang, Lichen Pan, Yuan Shen, Zhichao Chen, Degui Yang, Yifei Yang, Sen Zhang, Xinggao Liu, Haoxuan Li, Dacheng Tao
关键词:长时预测
TL; DR:学习在频域中进行预测可显著提高预测性能。
分数:8686
22 Fast and Slow Streams for Online Time Series Forecasting Without Information Leakage
链接:https://openreview.net/forum?id=I0n3EyogMi
作者:Ying-yee Ava Lau, Zhiwen Shao, Dit-Yan Yeung
关键词:online time series forecasting, concept drift, online learning
TL; DR:重新定义了在线时间序列预测的设置以防止信息泄露,并为此设置提出了一个与模型无关的框架。
分数:6688
23 Locally Connected Echo State Networks for Time Series Forecasting
链接:https://openreview.net/forum?id=KeRwLLwZaw
作者:Filip Matzner, František Mráz
关键词:Time Series Analysis, Time Series Forecasting, Recurrent Networks, Regression, Echo State Networks
TL; DR:改进的本地连接 ESN 方法可与真实世界时间序列数据集上的最新方法相媲美。
分数:6666
24 Shifting the Paradigm: A Diffeomorphism Between Time Series Data Manifolds for Achieving Shift-Invariancy in Deep Learning
链接:https://openreview.net/forum?id=nibeaHUEJx
作者:Berken Utku Demirel, Christian Holz
关键词:Time series analysis, invariance in neural networks
分数:6688
25 Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement
链接:https://openreview.net/forum?id=Q5Sawm0nqo
作者:Gaurav Patel, Christopher Michael Sandino, Behrooz Mahasseni, Ellen L. Zippi, Erdrin Azemi, Ali Moin, Juri Minxha
关键词: Time Series, Source-Free Domain Adaptation, Efficiency
TL; DR:用于时间序列的高效无源域适应框架,可提高适应过程的参数和样本效率。
分数:6105565
26 Physiome-ODE: A Benchmark for Irregularly Sampled Multivariate Time-Series Forecasting Based on Biological ODEs
链接:https://openreview.net/forum?id=6ouZaBzeNO
作者:Christian Klötergens, Vijaya Krishna Yalavarthi, Randolf Scholz, Maximilian Stubbemann, Stefan Born, Lars Schmidt-Thieme
关键词:Irregular Time Series, ODE
TL; DR:基于存储在 Physiome 模型存储库中的生物 ODE 模型创建的不规则时间序列预测基准。
分数:6333
27 Towards Neural Scaling Laws for Time Series Foundation Models
链接:https://openreview.net/forum?id=uCqxDfLYrB
作者:Qingren Yao, Chao-Han Huck Yang, Renhe Jiang, Yuxuan Liang, Ming Jin, Shirui Pan
关键词:Time series, scaling law, foundation model, transformer, forecasting
分数:5668
28 CATCH: Channel-Aware Multivariate Time Series Anomaly Detection via Frequency Patching
链接:https://openreview.net/forum?id=m08aK3xxdJ
作者:Xingjian Wu, Xiangfei Qiu, Zhengyu Li, Yihang Wang, Jilin Hu, Chenjuan Guo, Hui Xiong, Bin Yang
关键词:多元时间序列异常检测
分数:5668
29 CoMRes: Semi-Supervised Time Series Forecasting Utilizing Consensus Promotion of Multi-Resolution
链接:https://openreview.net/forum?id=bRa4JLPzii
作者:Yunju Cho, Jay-Yoon Lee
关键词:预测,多尺度,半监督
TL; DR:提出了一种利用 CON 的新型半监督时间序列预测
分数:8665
30 Context-Alignment: Activating and Enhancing LLMs Capabilities in Time Series
链接:https://openreview.net/forum?id=syC2764fPc
作者:Yuxiao Hu, Qian Li, Jinyue Yan, Dongxiao Zhang, Yuntian Chen
关键词:大模型,上下文对齐
TL; DR:用于时间序列任务的 LLM
分数:6666
31 TVNet: A Novel Time Series Analysis Method Based on Dynamic Convolution and 3D-Variation
链接:https://openreview.net/forum?id=MZDdTzN6Cy
作者:Chenghan Li, Mingchen Li, Ruisheng Diao
关键词:时序分析,动态卷积
TL; DR:新的基于时间序列建模视角的 3D 变化和新的分析框架
分数:5668
32 Multi-Resolution Decomposable Diffusion Model for Non-Stationary Time Series Anomaly Detection
链接:https://openreview.net/forum?id=eWocmTQn7H
作者:Guojin Zhong, pan wang, Jin Yuan, Zhiyong Li, Long Chen
关键词:Diffusion Model, Non-Stationary Time Series, Anomaly Detection, Multi-Resolution
TL; DR:本文深入探讨了多分辨率技术和扩散模型在非平稳时间序列异常检测方面的潜力,并得到了严格的数学证明的支持。
分数:6668
33 KooNPro: A Variance-Aware Koopman Probabilistic Model Enhanced by Neural Processes for Time Series Forecasting
链接:https://openreview.net/forum?id=5oSUgTzs8Y
作者:Ronghua Zheng, Hanru Bai, Weiyang Ding
关键词:概率预测,库普曼模型,神经过程
分数:66666
34 Towards a General Time Series Anomaly Detector with Adaptive Bottlenecks and Dual Adversarial Decoders
链接:https://openreview.net/forum?id=aKcd7ImG5e
作者:Qichao Shentu, Beibu Li, Kai Zhao, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, Chenjuan Guo
关键词:异常检测
TL; DR:提出了一种通用的时间序列异常检测模型,该模型在多域数据集上进行了预训练,随后可以应用于许多下游场景
分数:6666
35 TimeKAN: KAN-based Frequency Decomposition Learning Architecture for Long-term Time Series Forecasting
链接:https://openreview.net/forum?id=wTLc79YNbh
作者:Songtao Huang, Zhen Zhao, Can Li, LEI BAI
关键词:kolmogorov-Arnold Network;预测
分数:3588
36 S4M: S4 for multivariate time series forecasting with Missing values
链接:https://openreview.net/forum?id=BkftcwIVmR
作者:Peng Jing, Meiqi Yang, Qiong Zhang, Xiaoxiao Li
关键词:S4 Models, Multivariate Time Series Forecasting, Missing Value, Prototype Bank
分数:5665
37 A Simple Baseline for Multivariate Time Series Forecasting
链接:https://openreview.net/forum?id=oANkBaVci5
作者:Hui Chen, Viet Luong, Lopamudra Mukherjee, Vikas Singh
关键词:预测,小波
分数:5688
38 Shedding Light on Time Series Classification using Interpretability Gated Networks
链接:https://openreview.net/forum?id=n34taxF0TC
作者:Yunshi Wen, Tengfei Ma, Ronny Luss, Debarun Bhattacharjya, Achille Fokoue, Anak Agung Julius
关键词:可解释性,Shapelet
TL;DR: 将可解释模型与深度神经网络相结合,实现可解释的时间序列分类的框架。
分数:65688
39 Flow Matching with Gaussian Process Priors for Probabilistic Time Series Forecasting
链接:https://openreview.net/forum?id=uxVBbSlKQ4
作者:Marcel Kollovieh, Marten Lienen, David Lüdke, Leo Schwinn, Stephan Günnemann
关键词: 流匹配,预测,生成模型
TL; DR:提出了 TSFlow,这是一种用于时间序列预测的条件流匹配模型,它利用特定于领域的先验
分数:8865
40 Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
链接:https://openreview.net/forum?id=Vp2OAxMs2s
作者:Manuel Brenner, Elias Weber, Georgia Koppe, Daniel Durstewitz
关键词:动力系统、循环神经网络、分层建模、时间序列、可解释性、非线性动力学、基础模型
TL; DR:跨多个领域/主题推断动态系统模型的通用框架。
分数:6818
41 TS-LIF: A Temporal Segment Spiking Neuron Network for Time Series Forecasting
链接:https://openreview.net/forum?id=rDe9yQQYKt
作者:FENG SHIBO, Wanjin Feng, Xingyu Gao, Peilin Zhao, Zhiqi Shen
关键词:spiking neural network, time series forecasting, Application
TL; DR:提出了一种用于多变量时间序列预测的 Temporal Segment Spiking Neuron Network (TS-LIF),并辅以稳定性分析和频率响应分析,以证明其有效性和效率。
分数:6666
42 Quantifying Past Error Matters: Conformal Inference for Time Series
链接:https://openreview.net/forum?id=RD9q5vEe1Q
作者:Junxi Wu, Dongjian Hu, Yajie Bao, Shu-Tao Xia, Changliang Zou
关键词:不确定性量化,共形预测,分布偏移
TL; DR:通过量化覆盖不足/过度的程度提出了一种新的在线共形推理方法 ECI,该方法可以对时间序列中的分布变化做出快速反应。
分数:5668
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅