本文是我对ALBERT论文的一个总结归纳,如有理解上的偏差、错误欢迎大家指正批评,感谢。
前言
RoBERTa没霸榜几天,这不Google爸爸就又放大招,这次的新模型不再是简单的的升级,而是采用了全新的参数共享机制,反观其他升级版BERT模型,基本都是添加了更多的预训练任务,增大数据量等轻微的改动。这次ALBERT的改进,不仅提升了模型的整体效果再一次拿下来各项榜单的榜首,而且参数量相比BERT来说少了很多。
对于预训练模型来说,提升模型的大小是能对下游任务的效果有一定提升,然而如果进一步提升模型规模,势必会导致显存或者内存出现OOM的问题,长时间的训练也可能导致模型出现退化的情况。为了解决这些问题,Google爸爸提出了ALBERT,该模型提出了两种减少内存的方法,同时提升了训练速度,其次改进了BERT中的NSP的预训练任务。接下来就让我们一起来看看这个新的模型到底是什么样子的。
相比于BERT的改进
ALBERT也是采用和BERT一样的Transformer的encoder结果,激活函数使用的也是GELU,在讲解下面的内容前,我们规定几个参数,词的embedding我们设置为E,encoder的层数我们设置为L,hidden size即encoder的输出值的维度我们设置为H,前馈神经网络的节点数设置为4H,attention的head个数设置为H/64。
在ALBERT中主要有三个改进方向。
1、对Embedding因式分解(Factorized embedding parameterization)
在BERT中,词embedding与encoder输出的embedding维度是一样的都是768。但是ALBERT认为,词级别的embedding是没有上下文依赖的表述,而隐藏层的输出值不仅包括了词本生的意思还包括一些上下文信息,理论上来说隐藏层的表述包含的信息应该更多一些,因此应该让H>>E,所以ALBERT的词向量的维度是小于encoder输出值维度的。
在NLP任务中,通常词典都会很大,embedding matrix的大小是E×V,如果和BERT一样让H=E,那么embedding matrix的参数量会很大,并且反向传播的过程中,更新的内容也比较稀疏。
结合上述说的两个点,ALBERT采用了一种因式分解的方法来降低参数量。首先把one-hot向量映射到一个低维度的空间,大小为E,然后再映射到一个高维度的空间,说白了就是先经过一个维度很低的embedding matrix,然后再经过一个高维度matrix把维度变到隐藏层的空间内,从而把参数量从 O ( V × H ) O(V×H) O(V×H)降低到了 O ( V × E + E × H ) O(V×E+E×H) O(V×E+E×H),当E<<H时参数量减少的很明显。
下图是E选择不同值的一个实验结果,尴尬的是,在不采用参数共享优化方案时E设置为768效果反而好一些,在采用了参数共享优化方案时E取128效果更好一些。
2、跨层的参数共享(Cross-layer parameter sharing)
在ALBERT还提出了一种参数共享的方法,Transformer中共享参数有多种方案,只共享全连接层,只共享attention层,ALBERT结合了上述两种方案,全连接层与attention层都进行参数共享,也就是说共享encoder内的所有参数,同样量级下的Transformer采用该方案后实际上效果是有下降的,但是参数量减少了很多,训练速度也提升了很多。
下图是BERT与ALBERT的一个对比,以base为例,BERT的参数是108M,而ALBERT仅有12M,但是效果的确相比BERT降低了两个点。由于其速度快的原因,我们再以BERT xlarge为参照标准其参数是1280M,假设其训练速度是1,ALBERT的xxlarge版本的训练速度是其1.2倍,并且参数也才223M,评判标准的平均值也达到了最高的88.7
除了上述说了训练速度快之外,ALBERT每一层的输出的embedding相比于BERT来说震荡幅度更小一些。下图是不同的层的输出值的L2距离与cosine相似度,可见参数共享其实是有稳定网络参数的作用的。
3、句间连贯(Inter-sentence coherence loss)
BERT的NSP任务实际上是一个二分类,训练数据的正样本是通过采样同一个文档中的两个连续的句子,而负样本是通过采用两个不同的文档的句子。该任务主要是希望能提高下游任务的效果,例如NLI自然语言推理任务。但是后续的研究发现该任务效果并不好,主要原因是因为其任务过于简单。NSP其实包含了两个子任务,主题预测与关系一致性预测,但是主题预测相比于关系一致性预测简单太多了,并且在MLM任务中其实也有类型的效果。
这里提一下为啥包含了主题预测,因为正样本是在同一个文档中选取的,负样本是在不同的文档选取的,假如我们有2个文档,一个是娱乐相关的,一个是新中国成立70周年相关的,那么负样本选择的内容就是不同的主题,而正样都在娱乐文档中选择的话预测出来的主题就是娱乐,在新中国成立70周年的文档中选择的话就是后者这个主题了。
在ALBERT中,为了只保留一致性任务去除主题识别的影响,提出了一个新的任务 sentence-order prediction(SOP),SOP的正样本和NSP的获取方式是一样的,负样本把正样本的顺序反转即可。SOP因为实在同一个文档中选的,其只关注句子的顺序并没有主题方面的影响。并且SOP能解决NSP的任务,但是NSP并不能解决SOP的任务,该任务的添加给最终的结果提升了一个点。
4、移除dropout
除了上面提到的三个主要优化点,ALBERT的作者还发现一个很有意思的点,ALBERT在训练了100w步之后,模型依旧没有过拟合,于是乎作者果断移除了dropout,没想到对下游任务的效果竟然有一定的提升。这也是业界第一次发现dropout对大规模的预训练模型会造成负面影响。
总结
在初闻ALBERT时,以为其减少了总的运算量,但实际上是通过参数共享的方式降低了内存,预测阶段还是需要和BERT一样的时间,如果采用了xxlarge版本的ALBERT,那实际上预测速度会更慢。
ALBERT解决的是训练时候的速度提升,如果要真的做到总体运算量的减少,的确是一个复杂且艰巨的任务,毕竟鱼与熊掌不可兼得。不过话说回来,ALBERT也更加适合采用feature base或者模型蒸馏等方式来提升最终效果。
ALBERT作者最后也简单提了下后续可能的优化方案,例如采用sparse attention或者block attention,这些方案的确是能真正降低运算量。其次,作者认为还有更多维度的特征需要去采用其他的自监督任务来捕获。
参考文献
ALBERT: A LITE BERT FOR SELF-SUPERVISED
LEARNING OF LANGUAGE REPRESENTATIONS