下载
直接去anaconda官网下载安装文件即可,具体网站自行搜索。
官网提供linux版本,windows版本,mac版本。
同时提供Anaconda完整版和miniconda最小版(无软件界面的,仅支持命令行执行),新手推荐使用Anaconda版,熟悉之后推荐改用miniconda版,占用存储空间小,使用起来感受一样。
安装
linux环境
bash Anaconda3-2019.07-Linux-x86_64.sh
#yes+回车
#然后重启terminal
window环境:直接双击安装exe文件,然后根据安装向导进行安装
升级
升级Anaconda需要先升级conda
conda update conda #基本升级
conda update anaconda #大的升级
conda update anaconda-navigator #update最新版本的anaconda-navigator
conda环境使用基本命令
conda update -n base conda #update最新版本的conda
conda update --all #update最新版本的conda
conda create -n xxxx python=3.5 #创建python3.5的xxxx虚拟环境
conda activate xxxx #开启xxxx环境
conda deactivate #关闭环境
conda env list #显示所有的虚拟环境
conda info --envs #显示所有的虚拟环境
查看指定包可安装版本信息命令
查看tensorflow各个版本:(查看会发现有一大堆TensorFlow源,但是不能随便选,选择可以用查找命令定位)
conda search -h #查看search使用帮助信息
conda search tensorflow
查看指定包可安装版本信息命令
anaconda show <USER/PACKAGE>
查看指定anaconda/tensorflow版本信息
conda show tensorflow
输出结果会提供一个下载地址,使用下面命令就可指定安装1.8.0版本tensorflow
conda install --channel https://conda.anaconda.org/anaconda tensorflow=1.8.0
更新,卸载安装包:
conda list #查看已经安装的文件包
conda list -n xxx #指定查看xxx虚拟环境下安装的package
conda update xxx #更新xxx文件包
conda uninstall xxx #卸载xxx文件包
删除虚拟环境
conda remove -n xxxx --all //创建xxxx虚拟环境
清理(conda瘦身)
conda clean就可以轻松搞定!第一步:通过conda clean -p来删除一些没用的包,这个命令会检查哪些包没有在包缓存中被硬依赖到其他地方,并删除它们。第二步:通过conda clean -t可以将删除conda保存下来的tar包。
conda clean -p //删除没有用的包
conda clean -t //删除tar包
conda clean -y --all //删除所有的安装包及cache
参考:https://blog.csdn.net/menc15/article/details/71477949
复制/重命名/删除env环境
Conda是没有重命名环境的功能的, 要实现这个基本需求, 只能通过愚蠢的克隆-删除的过程。
切记不要直接mv移动环境的文件夹来重命名, 会导致一系列无法想象的错误的发生!
//克隆oldname环境为newname环境
conda create --name newname --clone oldname
//彻底删除旧环境
conda remove --name oldname --all
注意:必须在base环境下进行以上操作,否则会出现各种莫名的问题。
conda自动开启/关闭激活
参考:https://www.cnblogs.com/clemente/p/11231539.html
conda activate #默认激活base环境
conda activate xxx #激活xxx环境
conda deactivate #关闭当前环境
conda config --set auto_activate_base false #关闭自动激活状态
conda config --set auto_activate_base true #关闭自动激活状态
Conda 安装本地包
有时conda或pip源下载速度太慢,install a过程中会中断连接导致压缩包下载不全,
此时,我们可以用浏览器等工具先下载指定包再用conda或pip进行本地安装
#pip 安装本地包
pip install ~/Downloads/a.whl
#conda 安装本地包
conda install --use-local ~/Downloads/a.tar.bz2
解决conda/pip install 下载速度慢
conda数据源管理
#显示目前conda的数据源有哪些
conda config --show channels
#添加数据源:例如, 添加清华anaconda镜像:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
#删除数据源
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
记录一下
#本人的 ~/.condarc
auto_activate_base: false
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
show_channel_urls: true
pip数据源管理
#显示目前pip的数据源有哪些
pip config list
pip config list --[user|global] # 列出用户|全局的设置
pip config get global.index-url # 得到这key对应的value 如:https://mirrors.aliyun.com/pypi/simple/
# 添加
pip config set key value
#添加数据源:例如, 添加USTC中科大的源:
pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple
#添加全局使用该数据源
pip config set global.trusted-host https://mirrors.ustc.edu.cn/pypi/web/simple
# 删除
pip config unset key
# 例如
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
#搜索
pip search flask #搜素flask安装包
# 升级pip
pip install pip -U
记录一下pip国内源
阿里云 http://mirrors.aliyun.com/pypi/simple/
中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
豆瓣(douban) http://pypi.douban.com/simple/
清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/
中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/
pip安装包管理
pip list #列出当前缓存的包
pip purge #清除缓存
pip remove #删除对应的缓存
pip help #帮助
pip install xxx #安装xxx包
pip install xxx.whl #安装xxx.whl本地包
pip uninstall xxx #删除xxx包
pip show xxx #展示指定的已安装的xxx包
pip check xxx #检查xxx包的依赖是否合适