Java使用kafka的API来监控kafka的某些topic的数据量增量,offset,定时查总量之后,然后计算差值,然后就可以算单位间隔的每个topic的增量,kafka监控一般都是监控的吞吐量,即数据量的大小,而不在意这个count,数量。额,这个就是在意count。统计一下count。
使用的jar依赖
compile group: 'org.apache.kafka', name: 'kafka_2.10', version: '0.8.0'
Java代码
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.common.TopicAndPartition;
import kafka.javaapi.OffsetResponse;
import kafka.javaapi.PartitionMetadata;
import kafka.javaapi.TopicMetadata;
import kafka.javaapi.TopicMetadataRequest;
import kafka.javaapi.consumer.SimpleConsumer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Date;
import java.util.List;
import java.util.Map;
/**
* kafka监控 topic的数据消费情况
*
* @author LiXuekai on 2020/9/16
*/
public class KafkaMonitorTools {
private static final Logger LOGGER = LoggerFactory.getLogger(KafkaMonitorTools.class);
public static long getLastOffset(SimpleConsumer consumer, String topic, int partition, long whichTime, String clientName) {
TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
Map requestInfo = Maps.newHashMap();
requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
OffsetResponse response = consumer.getOffsetsBefore(request);
if (response.hasError()) {
LOGGER.error("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition));
return 0;
}
long[] offsets = response.offsets(topic, partition);
return offsets[0];
}
/**
* @param brokers broker 地址
* @param topic topic
* @return map
*/
public static Map findLeader(List brokers, String topic) {
Map map = Maps.newHashMap();
for (String broker : brokers) {
SimpleConsumer consumer = null;
try {
String[] hostAndPort = broker.split(":");
consumer = new SimpleConsumer(hostAndPort[0], Integer.parseInt(hostAndPort[1]), 100000, 64 * 1024, "leaderLookup" + new Date().getTime());
List topics = Lists.newArrayList(topic);
TopicMetadataRequest req = new TopicMetadataRequest(topics);
kafka.javaapi.TopicMetadataResponse resp = consumer.send(req);
List metaData = resp.topicsMetadata();
for (TopicMetadata item : metaData) {
for (PartitionMetadata part : item.partitionsMetadata()) {
map.put(part.partitionId(), part);
}
}
} catch (Exception e) {
LOGGER.error("Error communicating with Broker [" + broker + "] to find Leader for [" + topic + ", ] Reason: " + e);
} finally {
if (consumer != null)
consumer.close();
}
}
return map;
}
public static Map monitor(List brokers, List topics) {
if (brokers == null || brokers.isEmpty()) {
return null;
}
if (topics == null || topics.isEmpty()) {
return null;
}
Map map = Maps.newTreeMap();
for (String topicName : topics) {
Map metadata = findLeader(brokers, topicName);
long size = 0L;
for (Map.Entry entry : metadata.entrySet()) {
int partition = entry.getKey();
String leadBroker = entry.getValue().leader().host();
String clientName = "Client_" + topicName + "_" + partition;
SimpleConsumer consumer = new SimpleConsumer(leadBroker, entry.getValue().leader().port(), 100000, 64 * 1024, clientName);
long readOffset = getLastOffset(consumer, topicName, partition, kafka.api.OffsetRequest.LatestTime(), clientName);
size += readOffset;
consumer.close();
}
map.put(topicName, size);
}
return map;
}
}
测试代码:
@Test
public void monitor() {
Map monitor = KafkaMonitorTools.monitor(Lists.newArrayList(server), Lists.newArrayList(topics.split(",")));
monitor.forEach((k, v)-> System.out.println(k + " " + v));
}
运行结果截图: