Bootstrap

JetBot-Jetcam的使用

1. 下载安装JetCam

git clone https://github.com/NVIDIA-AI-IOT/jetcam
cd jetcam
sudo python3 setup.py install

2. 测试摄像头

2.1 查看摄像头设备
ls -ltrh /dev/video*
2.2 创建相机对象
# csi摄像头
from jetcam.csi_camera import CSICamera
camera = CSICamera(width=224, height=224)
# usb摄像头
2.3 通过摄像头捕获图片
image = camera.read()
print(image.shape)
2.4 查看相机的像素高度,像素宽度和颜色通道数
print(camera.value.shape)
2.5 在jupyter notebook/jupyter lab显示图像信息
import ipywidgets
from IPython.display import display
from jetcam.utils import bgr8_to_jpeg

image_widget = ipywidgets.Image(format='jpeg')
image_widget.value = bgr8_to_jpeg(image)

display(image_widget)
# 设置摄像头实时显示图像
camera.running = True

def update_image(change):
    image = change['new']
    image_widget.value = bgr8_to_jpeg(image)
    
camera.observe(update_image, names='value')
2.6 关闭视频流
camera.unobserve(update_image, names='value')

3. 训练图像分类模型

3.1 打开摄像头
from jetcam.csi_camera import CSICamera
camera = CSICamera(width=224, height=224)
# 设置摄像头实时显示
camera.running = True
3.2 定义训练的标签
import torchvision.transforms as transforms
from dataset import ImageClassificationDataset

# 任务名称
TASK = 'classiofication_test'

# 类别
CATEGORIES = ['dinosaur', 'giraffe']

DATASETS = ['A']

TRANSFORMS = transforms.Compose([
    transforms.ColorJitter(0.2, 0.2, 0.2, 0.2),
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

datasets = {}
for name in DATASETS:
    datasets[name] = ImageClassificationDataset(TASK + '_' + name, CATEGORIES, TRANSFORMS)
    
print("任务{}已创建".format(TASK))
3.3 定于数据采集方法
import ipywidgets
import traitlets
from IPython.display import display
from jetcam.utils import bgr8_to_jpeg

# 初始化数据集
dataset = datasets[DATASETS[0]]

# 如果是第二次运行该单元,先取消摄像头的连接
camera.unobserve_all()

# 连接摄像头
camera_widget = ipywidgets.Image()
traitlets.dlink((camera, 'value'), (camera_widget, 'value'), transform=bgr8_to_jpeg)

# 创建需要显示的部件
dataset_widget = ipywidgets.Dropdown(options=DATASETS, description='dataset')
category_widget = ipywidgets.Dropdown(options=dataset.categories, description='category')
count_widget = ipywidgets.IntText(description='count')
save_widget = ipywidgets.Button(description='add')

# 初始化手动更新计数
count_widget.value = dataset.get_count(category_widget.value)

# 激活数据集
def set_dataset(change):
    global dataset
    dataset = datasets[change['new']]
    count_widget.value = dataset.get_count(category_widget.value)
dataset_widget.observe(set_dataset, names='value')

# 当选择新类别时更新计数
def update_counts(change):
    count_widget.value = dataset.get_count(change['new'])
category_widget.observe(update_counts, names='value')

# 保存图片更新计数
def save(c):
    dataset.save_entry(camera.value, category_widget.value)
    count_widget.value = dataset.get_count(category_widget.value)
save_widget.on_click(save)

data_collection_widget = ipywidgets.VBox([
    ipywidgets.HBox([camera_widget]), dataset_widget, category_widget, count_widget, save_widget
])
3.4 定义模型
import torch
import torchvision

# 使用gpu计算
device = torch.device('cuda')

# ALEXNET
# model = torchvision.models.alexnet(pretrained=True)
# model.classifier[-1] = torch.nn.Linear(4096, len(dataset.categories))

# RESNET 18
model = torchvision.models.resnet18(pretrained=True)
model.fc = torch.nn.Linear(512, len(dataset.categories))
    
model = model.to(device)

model_save_button = ipywidgets.Button(description='save model')
model_load_button = ipywidgets.Button(description='load model')
model_path_widget = ipywidgets.Text(description='model path', value='classification_model.pth')

def load_model(c):
    model.load_state_dict(torch.load(model_path_widget.value))
model_load_button.on_click(load_model)
    
def save_model(c):
    torch.save(model.state_dict(), model_path_widget.value)
model_save_button.on_click(save_model)

model_widget = ipywidgets.VBox([
    model_path_widget,
    ipywidgets.HBox([model_load_button, model_save_button])
])
3.5 定义实时执行的方法
import threading
import time
from utils import preprocess
import torch.nn.functional as F

state_widget = ipywidgets.ToggleButtons(options=['stop', 'live'], description='state', value='stop')
prediction_widget = ipywidgets.Text(description='prediction')
score_widgets = []
for category in dataset.categories:
    score_widget = ipywidgets.FloatSlider(min=0.0, max=1.0, description=category, orientation='vertical')
    score_widgets.append(score_widget)

def live(state_widget, model, camera, prediction_widget, score_widget):
    global dataset
    while state_widget.value == 'live':
        image = camera.value
        preprocessed = preprocess(image)
        output = model(preprocessed)
        output = F.softmax(output, dim=1).detach().cpu().numpy().flatten()
        category_index = output.argmax()
        prediction_widget.value = dataset.categories[category_index]
        for i, score in enumerate(list(output)):
            score_widgets[i].value = score
            
def start_live(change):
    if change['new'] == 'live':
        execute_thread = threading.Thread(target=live, args=(state_widget, model, camera, prediction_widget, score_widget))
        execute_thread.start()

state_widget.observe(start_live, names='value')

live_execution_widget = ipywidgets.VBox([
    ipywidgets.HBox(score_widgets),
    prediction_widget,
    state_widget
])

print("组件已创建")
3.6 定义训练和评估方法
BATCH_SIZE = 8

# 定义优化器
optimizer = torch.optim.Adam(model.parameters())
# optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, momentum=0.9)

epochs_widget = ipywidgets.IntText(description='epochs', value=1)
eval_button = ipywidgets.Button(description='evaluate')
train_button = ipywidgets.Button(description='train')
loss_widget = ipywidgets.FloatText(description='loss')
accuracy_widget = ipywidgets.FloatText(description='accuracy')
progress_widget = ipywidgets.FloatProgress(min=0.0, max=1.0, description='progress')

def train_eval(is_training):
    global BATCH_SIZE, LEARNING_RATE, MOMENTUM, model, dataset, optimizer, eval_button, train_button, accuracy_widget, loss_widget, progress_widget, state_widget
    
    try:
        train_loader = torch.utils.data.DataLoader(
            dataset,
            batch_size=BATCH_SIZE,
            shuffle=True
        )

        state_widget.value = 'stop'
        train_button.disabled = True
        eval_button.disabled = True
        time.sleep(1)

        if is_training:
            model = model.train()
        else:
            model = model.eval()
        while epochs_widget.value > 0:
            i = 0
            sum_loss = 0.0
            error_count = 0.0
            for images, labels in iter(train_loader):
                # send data to device
                images = images.to(device)
                labels = labels.to(device)

                if is_training:
                    # 梯度清零
                    optimizer.zero_grad()

                # 反向传播并优化参数
                outputs = model(images)
                loss = F.cross_entropy(outputs, labels)
                if is_training:
                    loss.backward()
                    optimizer.step()

                error_count += len(torch.nonzero(outputs.argmax(1) - labels).flatten())
                count = len(labels.flatten())
                i += count
                sum_loss += float(loss)
                progress_widget.value = i / len(dataset)
                loss_widget.value = sum_loss / i
                accuracy_widget.value = 1.0 - error_count / i
                
            if is_training:
                epochs_widget.value = epochs_widget.value - 1
            else:
                break
    except e:
        pass
    model = model.eval()

    train_button.disabled = False
    eval_button.disabled = False
    state_widget.value = 'live'
    
train_button.on_click(lambda c: train_eval(is_training=True))
eval_button.on_click(lambda c: train_eval(is_training=False))
    
train_eval_widget = ipywidgets.VBox([
    epochs_widget,
    progress_widget,
    loss_widget,
    accuracy_widget,
    ipywidgets.HBox([train_button, eval_button])
])

print("训练评估方法已创建")
3.7 显示交互工具
all_widget = ipywidgets.VBox([
    ipywidgets.HBox([data_collection_widget, live_execution_widget]), 
    train_eval_widget,
    model_widget
])

display(all_widget)
;