原标题:基于EMD方法的地心运动时间序列分析
地球质心(CM)是整个地球的质量中心,地表物质变迁引起CM相对于地球参考框架原点的位移称作地心运动。CM是地球参考系的原点,建立地心运动的观测模型用于参考框架原点的改正,将会进一步提高空间大地测量精度。同时地心运动蕴含了丰富的地球物理信息,在研究时变重力场等领域中也发挥着重要作用。故测定分析地心运动成为一项必要的工作。
许多学者利用GPS和SLR等空间大地测量技术在测定地心运动方面作了大量相关研究。目前常用的地心运动反演方法有网平移法、动力法和一阶形变法等。研究均发现了地心运动存在周年和近半年的周期分量。但不同方法求得的振幅存在一定差异,对于其他周期项的估计也不完全相同,信号混淆是造成这种差异的原因之一。由于相对较低频的周期信息会湮没在噪声中,影响对周期的分析及确定,因此也有学者在分析地心运动周期性变化之前,利用低通滤波器或小波变换剔除高频信息的影响,再利用“干净”的信号分析地心运动规律。但这一类方法不具有较强的自适应性,会对地心运动的周期分析造成一定影响。
针对信号混淆问题,如果可以采用一种自适应的盲源信号分解方法,剔除地心运动时间序列中的高频信息,分析重构后的干净时序,则可能会有更好的效果。经验模态分解方法(EMD)以其较强的自适应性,目前已被广泛应用于时间序列的信号分离等领域,并取得了良好的效果。如文献[11]运用EMD方法对微震信号降噪,效果明显;文献[12]利用EMD方法从GPS时间序列中分离出降水因素导致的准两年周期地表垂直形变;文献[13]证明EMD方法能有效分离出GPS信号中混杂的噪声信号,从而削弱噪声对结果的影响;文献[14]运用EMD和WD联合算法,分析了GPS水汽时间序列,并探测到各个GPS站均存在周年、半周年的周期震荡。
地心运动时序与GPS时间序列等类似,均混有高频信息的干扰,因此也可以利用EMD方法对地心运动时序进行预处理,对相对“干净”的时序进行分析。本文在现有研究的基础上,将EMD方法应用于地心运动时间序列分析领域;采用网平移法对IGS提供的GNSS周解进行解算得到2007-2017年间地心运动时间序列,对其进行分解重构,剔除高频项,并验证该方法的有效性;最后,利用重构后的时间序列对地心运动的周期和振幅作进一步的分析探讨。
1 地心运动的确定1.1 网平移法
利用IGS提供的2007-2017年GNSS周解数据,采用网平移法计算其与ITRF2014框架原点的平移量,得到地心运动时间序列。本文所使用的是Helmert七参数转换法,计算公式如下
(1)
式中,(x,y,z)为测站在ITRF2014框架下的坐标;(X,Y,Z)为测站坐标的GNSS周解;εx、εy、εz为旋转参数;s为尺度参数;Tx、Ty、Tz为平移参数,即地心位移量[15]。为提高计算精度,本文尽可能均匀地选取核心测站数据进行地心运动反演,并对粗差进行修复,对于时间序列中的缺失部分,采用三次样条插值方法补全。
1.2 地心运动解算结果精度分析
本文求解的地心运动时间序列如图 1所示。对所得地心运动结果的精度评价主要包括两方面:一方面Tx、Ty和Tz的标准偏差可作为其内符合精度;另一方面美国得克萨斯大学空间研究中心(CSR)提供的利用SLR数据(跟踪lageos1/2两颗卫星)进行动力法解算的地心运动序列是国际公认的最佳结果,可以参考此时间序列评定计算结果的外符合精度。表 1给出了地心运动时序主要信息,以及内、外符合精度统计。
图 1 地心运动时间序列
表 1 地心运动结果及精度统计