Bootstrap

多视图多行为对比学习推荐系统

嘿,记得给“机器学习与推荐算法”添加星标


作者:吴贻清 

单位:中科院计算所 

研究方向:多行为推荐

多行为推荐(MBR)旨在联合考虑多种行为以提高目标行为的推荐效果。我们认为 MBR 模型应该:(1)对用户不同行为之间的粗粒度共性进行建模,(2)在多行为建模中同时考虑局部的序列视图和全局图视图,以及(3)捕获细粒度的用户的多种行为之间的差异。在这项工作中,我们提出了一种新的多行为多视图对比学习推荐(MMCLR)框架,包括三个新的对比学习任务,分别用于解决上述挑战。

多行为对比学习旨在使同一用户在每个视图中的不同用户单行为表示相似。多视图对比学习试图对其用户的序列视图和图形视图表示。行为区分对比学习侧重于对不同行为的细粒度差异进行建模。在实验中,我们进行了广泛的实验和消融测试,验证了 MMCLR 和设计的各种对比学习任务在两个真实世界数据集上的有效性,相比于现有的基线实现了SOTA性能。

本文基于DASFAA 2022论文《Multi-view Multi-behavior Contrastive Learning in Recommendation》,论文作者来自中科院计算所,微信,北航。

d7cd2c413dcd66d57a3a7160389baf0f.png

代码:https://github.com/wyqing20/MMCLR
论文:https://arxiv.org/pdf/2203.10576


背景介绍

个性化推荐旨在根据用户的喜好为用户提供合适的物品。个性化推荐的核心问题是如何从用户行为中准确捕捉用户偏好。在现实世界的场景中,用户通常有不同类型的行为来与推荐系统进行交互。例如,用户可以对电子商务系统(例如,亚马逊、淘宝)中的物品进行点击、加购物车、购买等行为,在社交推荐系统中(例如 推特,微博)可以进行点赞,分享,评论等行为。一些传统的推荐模型经常依赖单一的行为进行推荐。但是在实际系统中这样可能存在严重的数据稀疏性和冷启动问题,尤其当目标行为是高成本低频的行为。在这种情况下,其他行为(例如,点击,加购物车)可以为理解用户偏

;