53.寻宝
prim算法
prim算法三部曲:
1.选择当前最短入树结点;2.更新入树结点;3.更新结点距离最小生成树的距离。
可以把所有已经使用过的结点看作一个整体,然后把他们相接的结点的结点顶点边中进行选择,选择最短的一条边把该结点入树,某种程度来说也是一种贪心?
V, E = map(int, input().split())
nodes = [[float('inf')] * (V+1) for _ in range(V+1)]
for i in range(E):
start, end, length = map(int, input().split())
nodes[start][end] = length
nodes[end][start] = length
visited = [False] * (V+1)
minDist = [float('inf')] * (V+1)
cur = 1
for i in range(V-1):
minD = float('inf')
# 1.选择最短入树结点
for j in range(1, V+1):
if not visited[j] and minDist[j]<minD:
cur = j
minD = minDist[j]
# 2.入树
visited[cur] = True
# 3.更新相接不在树中的顶点的距离
for i in range(1, V+1):
if not visited[i] and nodes[cur][i] < minDist[i]:
minDist[i] = nodes[cur][i]
result = 0
for i in range(2, V+1):
result += minDist[i]
print(result)
kruskal算法
kruskal算法以边为导向,先把边按照长度从小到大排序,然后一个个检查边的两个端点是否在同一个集合中(这里使用并查集判断),在同一个集合中就不加入这个边,不在的话就加入。
V, E = map(int, input().split())
edges = []
for i in range(E):
edges.append(list(map(int, input().split())))
edges.sort(key= lambda edge: edge[2])
father = [0] * (V+1)
for i in range(V+1):
father[i] = i
def find(u):
if father[u] != u:
father[u] = find(father[u])
return father[u]
def isSame(u, v):
u = find(u)
v = find(v)
return u == v
def join(u, v):
u = find(u)
v = find(v)
if not u==v:
father[v] = u
result = 0
for edge in edges:
start = edge[0]
end = edge[1]
val = edge[2]
if not isSame(start, end):
result += val
join(start, end)
print(result)