Bootstrap

10.进阶—SQL优化

目录

插入数据

insert优化

批量插入

手动提交事务

主键顺序插入

大批量插入数据

主键优化

数据组织方式

页分裂

页合并 

知识小贴士

主键设计原则

order by优化

group by优化

limit优化

count优化

count的几种用法

count(主键)

count(字段)

count(1)

count(*)

update优化


插入数据

insert优化

批量插入

insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');

手动提交事务

start transactions;
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
insert into tb_test values(4,'Tom'),(5,'Cat'),(6,'Jerry');
insert into tb_test values(7,'Tom'),(8,'Cat'),(9,'Jerry');
commit;

主键顺序插入

主键乱序插入:8    1    9    21    88    2    4    15    89    5    7    3
主键顺序插入:1    2    3    4    5    7    8    9    15    21    88    89

大批量插入数据

如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:

--客户端连接服务站时,加上参数--local-infile
mysql --local-infile -u -root -p
--设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
--执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table 'tb_user' fields terminated by ',' lines terminated by '\n';

主键顺序插入性能高于乱序插入


主键优化

数据组织方式

在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。

 

页分裂

页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据多大,会行溢出),根据主键排列。

 

页合并 

当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。

当页中删除的记录达到MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间使用。

 

知识小贴士

MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。

主键设计原则

  • 满足业务需求的情况下,尽量降低主键的长度。
  • 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。
  • 尽量不要使用UUID做主键或者是其他自然主键,如身份证号。
  • 业务操作时,避免对主键的修改。


order by优化

Using filesort:通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSort排序。

Using index:通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高

--没有创建索引时,根据age,phone进行排序
explain select id, age, phone from tb_user order by age, phone;
--创建索引
create index idx_user_age_phone_aa on tb_user(age,phone);
--创建索引后,根据age,phone进行升序排序
explain select id, age, phone from tb_user order by age, phone;
--创建索引后,根据age,phone进行降序排序
explain select id, age, phone from tb_user order by age desc, phone desc;

 

--根据age,phone进行降序一个升序,一个降序
explain select id, age, phone from tb_user order by age asc, phone desc;
--创建索引
create index idx_user_age_phone_ad on tb_user(age asc, phone desc);
--根据age,phone进行降序一个升序,一个降序
explain select id, age, phone from tb_user order by age asc, phone desc;

  • 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
  • 尽量使用覆盖索引。
  • 多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
  • 如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小sort_buffer_size(默认256k)。

group by优化

  • 在分组操作时,可以通过索引来提高效率。
  • 分组操作时,索引的使用也是满足最左前缀法则的。
--删除掉目前的联合索引idx_user_pro_age_sta
drop index idx_user_pro_age_sta on tb_user;
--执行分组操作,根据profession字段分组
explain select profession, count(*) from tb_user group by profession;
--创建索引
create index idx_user_pro_age_sta on tb_user(profession, age, status);
--执行分组操作,根据profession字段分组
explain select profession, count(*) from tb_user group by profession;
--执行分组操作,根据profession字段分组
explain select profession, count(*) from tb_user group by profession, age;

 

 


limit优化

一个常见又非常头疼的问题就是limit2000000,10,此时需要MySQL排序前2000010记录,仅仅返回2000000-2000010的记录,其他记录丢弃,查询排序的代价非常大。

优化思路:一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。

explain select * from tb_sku t, (select id from tb_sku order by id limit 2000000, 10) a where t.id = a.id;

count优化

explain select count(*) from tb_user;
  • MyISAM引擎把一个表的总行数存在了磁盘上,因此执行count(*)的时候会直接返回这个数,效率很高;
  • InnoDB引擎就麻烦了,它执行count(*)的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。

优化思路:自己计数。

count的几种用法

count()是一个聚合函数,对于返回的结果集,一行行地判断,如果count函数的参数不是NULL,累计值就加1,否则不加,最后返回累计值。

用法:count(*)、count(主键)、count(字段)、count(1)

count(主键)

InnoDB引擎会遍历整张表,把每一行的主键id值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为null)。

count(字段)

  • 没有not null约束:InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加。
  • 有not null约束:InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。

count(1)

InnoDB引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1”进去,直接按行进行累加。

count(*)

InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。

按照效率排序的话,count(字段)< count(主键id)< count(1)≈count(*),所以尽量使用count(*)


update优化

--有索引是行锁,没索引是表锁
update student set no = '2000100100' where id = 1;

update student set no = '2000100105' where name = '韦一笑';

InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。

;