使用Springboot+websocket+kafka模拟实时数据传输
环境准备
环境:
- 本地Spark版本为:3.0.0
- scala版本:2.12.10
- kafka版本:kafak_2.12-2.4.0
- sbt版本:1.8.2
注意环境变量的设置
本地有goods-input.csv文件作为数据源, 该文件是gbk编码
数据源读取
首先需要读取该文件数据,并发送到kafka
在spark的安装目录下准备项目结构:./mycode/producer/src/main/scala/
注意要把kafka安装目录下libs中的jar包复制到spark安装目录下jars文件夹下
使用scala来编写读取数据源代码, 在scala目录下创建SalesProducer.scala
:
import org.apache.hadoop.io.{LongWritable, Text}
import org.apache.hadoop.mapred.TextInputFormat
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
import java.util.Properties
import java.util.concurrent.TimeUnit
object SalesProducer {
private val KAFKA_TOPIC = "sales"
def main(args: Array[String]): Unit = {
val props = new Properties()
props.put("bootstrap.servers", "localhost:9092")
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
val sparkConf = new SparkConf().setAppName("Sales").setMaster("local[2]")
val sc = new SparkContext(sparkConf)
val producer = new KafkaProducer[String, String](props)
val filePath = "file:///...../goods-input.csv"
//使用hadoopFile读取本地的文件
val fileRDD: RDD[String] = sc
.hadoopFile(filePath, classOf[TextInputFormat], classOf[LongWritable], classOf[Text])
.map(p => {
//gbk读取
new String(p._2.getBytes, 0, p._2.getLength, "GBK")
})
//读取到的数据发送到kafka
fileRDD.collect.foreach(line => {
System.out.println("send: " + line);
producer.send(new ProducerRecord[String, String](TOPIC, line))
//间隔100ms发送
TimeUnit.MILLISECONDS.sleep(100)
})
producer.close()
}
}
接着编写一个Consumer来测试Proudcer能否正常发送数据
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.{HasOffsetRanges, KafkaUtils}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
object SalesConsumer {
private val KAFKA_TOPIC = "sales"
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("Sales").setMaster("local[2]")
val sc = new SparkContext(sparkConf)
sc.setLogLevel("ERROR")
val ssc = new StreamingContext(sc, Seconds(10))
ssc.checkpoint("file:///...../checkpoint")
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "localhost:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "sales",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (true: java.lang.Boolean)
)
val topics = Array(KAFKA_TOPIC)
val stream = KafkaUtils.createDirectStream[String, String](
ssc,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
stream.foreachRDD(rdd => {
val offsetRange = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
val mapped: RDD[(String, String)] = rdd.map(record => (record.key, record.value))
val lines = mapped.map(_._2)
//retain the second element but ignore the first element
lines.foreach(println)
})
ssc.start
ssc.awaitTermination
}
}
然后在producer目录下编写build.sbt
里面的依赖是文件中所要用到的,且需匹配自己本地上的包版本
name := "Sales"
version := "1.0"
scalaVersion := "2.12.10"
libraryDependencies += "org.apache.spark" %% "spark-core" % "3.0.0"
libraryDependencies += "org.apache.spark" %% "spark-streaming" % "3.0.0" % "provided"
libraryDependencies += "org.apache.spark" %% "spark-streaming-kafka-0-10" % "3.0.0"
libraryDependencies += "org.apache.kafka" % "kafka-clients" % "2.6.0"
在build.sbt
所在的目录下运行
sbt package
然后启动kafka,过程略,使用jps
命令查看是否开启
打包成功后将其提交给Spark运行
打包后的文件在
./target/scala-xxx/
这个目录下
gnome-terminal -- bash -c "spark-submit --class SalesConsumer ./target/scala-2.12/sales_2.12-1.0.jar localhost:9092"
spark-submit --class SalesProducer ./target/scala-2.12/sales_2.12-1.0.jar localhost:9092
如果原有窗口(Proudcer)和新开窗口(Consumer)可以持续输出数据,那么测试成功
如果出现原有窗口要间隔很久才能输出一条数据,且新开窗口没有数据输出,请检查kafka是否正常启动
WebSocket服务器
使用springboot和WebSocket实现简单的服务器
pom.xml文件依赖:
请注意结合自己的对应版本
<dependencies>
<dependency>
<groupId>javax.websocket</groupId>
<artifactId>javax.websocket-api</artifactId>
<version>1.1</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-websocket</artifactId>
<version>3.0.0</version>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.12</artifactId>
<version>3.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.4.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
<version>3.0.0</version>
</dependency>
</dependencies>
首先实现一个Websocket来充当服务器
package org.example;
import org.springframework.stereotype.Component;
import javax.websocket.*;
import javax.websocket.server.ServerEndpoint;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
@ServerEndpoint("/sales")
@Component
public class WebSocket {
private Session session;
public static List<WebSocket> list = new ArrayList<>();
@OnOpen
public void onOpen(Session session){
System.out.println("Session " + session.getId() + " has opened a connection");
try {
this.session = session;
//保存实例,快速访问
list.add(this);
sendMessage("Connection Established");
} catch (IOException ex) {
ex.printStackTrace();
}
}
@OnMessage
public void onMessage(String message, Session session){
System.out.println("Message from " + session.getId() + ": " + message);
}
@OnClose
public void onClose(Session session){
System.out.println("Session " + session.getId() +" has closed!");
list.remove(this); //移除该实例
}
@OnError
public void onError(Session session, Throwable t) {
t.printStackTrace();
}
public void sendMessage(String msg) throws IOException {
try {
this.session.getBasicRemote().sendText(msg);
} catch (IllegalStateException e) {
e.printStackTrace();
}
}
}
实现一个Consumer来持续读取kafka的数据,继承Thread以便可以后台读取
package org.example;
import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.io.IOException;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;
public class SaleConsumer extends Thread {
private KafkaConsumer<String, String> kafkaConsumer;
@Override
public void run() {
Properties properties = new Properties();
try {
properties.put("client.id", InetAddress.getLocalHost().getHostName());
} catch (UnknownHostException e) {
e.printStackTrace();
}
properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
properties.put(ConsumerConfig.GROUP_ID_CONFIG, "sales");
kafkaConsumer = new KafkaConsumer<>(properties);
kafkaConsumer.subscribe(Collections.singletonList("sales"));// subscribe message from producer via kafka
while (true) {
ConsumerRecords<String, String> records = kafkaConsumer.poll(Duration.ofMillis(100));
for (ConsumerRecord<String, String> record : records) {
System.out.println("receive from kafka: " + record.value());
//对所有连接到服务器的websocket发送
for (WebSocket webSocket : WebSocket.list) {
try {
webSocket.sendMessage(record.value());
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
}
}
编写配置类WebSocketConfig
:
package org.example;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.socket.config.annotation.EnableWebSocket;
import org.springframework.web.socket.server.standard.ServerEndpointExporter;
@Configuration
@EnableWebSocket
public class WebSocketConfig {
//declare the annotation @ServerEndpoint
@Bean
public ServerEndpointExporter serverEndpoint() {
return new ServerEndpointExporter();
}
}
最后编写应用类 SaleApplication
:
package org.example;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.socket.config.annotation.EnableWebSocket;
@SpringBootApplication(exclude = {
org.springframework.boot.autoconfigure.gson.GsonAutoConfiguration.class,
})
@EnableWebSocket
public class SaleApplication {
public static void main(String[] args) {
SaleConsumer consumer = new SaleConsumer();
consumer.start();
SpringApplication.run(SaleApplication.class, args);
}
}
网页
编写一个网页,用来接收服务器发送的数据,将数据处理后使用HighCharts将其展示出来
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Realtime Sales Data</title>
<script src="./static/js/jquery-3.1.1.min.js"></script>
<script src="https://code.highcharts.com/highcharts.js"></script>
<script src="./static/js/exporting.js"></script>
<style>
.container {
width: 1200px;
height: 600px;
}
#container2 {
margin-top: 20px;
}
</style>
</head>
<body>
<div>
<b>SalesCount: </b><b id="sale_count" style="color: cornflowerblue;">0</b><br/>
<b>SalesAmount: </b><b id="sale_amount" style="color: cornflowerblue;">0</b><br/>
<b>SalesDate: </b><b id="sale_date" style="color: cornflowerblue;"></b><br/>
</div>
<div class="container" id="container1"></div>
<hr style="color: aliceblue">
<div class="container" id="container2"></div>
<script type="text/javascript" charset="utf-8">
$(document).ready(function () {
Highcharts.setOptions({
global: {
useUTC: false
}
});
let temp = undefined, timestamp = 0;
const saleChart = Highcharts.chart('container1', {
chart: {
type: 'line',
animation: Highcharts.svg, // use SVG animate
events: {
load: function() {
let series = this.series[0]
setInterval(function () {
let saleAmount = parseFloat($("#sale_amount").text());
let saleDate = $("#sale_date").text();
if (temp !== saleDate) {
temp = saleDate;
timestamp = 0;
} else {
timestamp += 10
}
let date = new Date(saleDate.replace(/^(\d{4})(\d{2})(\d{2})$/, "$1-$2-$3")).getTime() + timestamp
if (series.points.length > 15) series.addPoint([date, saleAmount], true, true);
else series.addPoint([date, saleAmount], true);
}, 666)
}
}
},
title: {
text: 'Shopping Sales'
},
xAxis: {
type: 'datetime',
labels: {
formatter: function() {
return Highcharts.dateFormat('%Y-%m-%d', this.value);
}
}
},
yAxis: {
title: {
text: 'Amount'
},
plotLines: [{
value: 0,
width: 1,
color: '#808080'
}]
},
tooltip: {
formatter: function () {
return '<b>Date:  </b>' + Highcharts.dateFormat('%Y-%m-%d', this.x) + '<br/>' +
'<b>Amount: </b>' + Highcharts.numberFormat(this.y, 2);
}
},
legend: {
enabled: true
},
exporting: {
enabled: true
},
series: [{
name: 'Amount',
}]
});
let categories = []
let cateData = []
const cateChart = Highcharts.chart('container2', {
chart: {
type: 'column',
animation: Highcharts.svg, // use SVG animate
events: {
load: function() {
let series = this.series[0];
setInterval(() => {
cateData.forEach((value, index) => {
series.points[index].update(value);
})
}, 1500)
}
}
},
title: {
text: 'Sales By Category'
},
xAxis: {
categories: categories,
title: {
text: 'Category Name'
}
},
yAxis: {
data: cateData,
title: {
text: 'Amount'
},
plotLines: [{
value: 0,
width: 1,
color: '#808080'
}]
},
tooltip: {
formatter: function () {
return '<b>Categroy:  </b>' + this.x + '<br/>' +
'<b>Amount: </b>' + Highcharts.numberFormat(this.y, 2);
}
},
legend: {
enabled: true
},
exporting: {
enabled: true
},
series: [{
name: 'Amount',
}]
});
var websocket = null;
var saleCount = 0;
var saleAmount = 0;
// check whether the browser support the websocket
if ('WebSocket' in window) {
//connect to springboot server
websocket = new WebSocket("ws://localhost:8080/sales");
} else {
alert('Not support websocket')
}
if (websocket != null) {
//call it when websocket occurred error
websocket.onerror = (error) => {
console.log("error: ", error.data);
};
//call it when websocket connected successfully
websocket.onopen = (event) => {
console.log("client opened");
}
//call it when websocket receive message
websocket.onmessage = (event) => {
setMessageInnerHTML(event.data);
}
//call it when websocket close
websocket.onclose = () => {
console.log("client closed");
}
window.onbeforeunload = () => {
closeWebSocket()
}
function setMessageInnerHTML(data) {
//pre-handle the primitive string
const arr = data.split(',');
const d = {
"customerCode": arr[0],
"categoryCode": arr[1],
"categoryName": arr[2],
"subCategoryCode": arr[3],
"subCategoryName": arr[4],
"productCode": arr[5],
"productName": arr[6],
"saleDate": arr[7],
"saleMonth": arr[8],
"goodsCode": arr[9],
"specification": arr[10],
"productType": arr[11],
"unit": arr[12],
"saleQuantity": arr[13],
"saleAmount": arr[14],
"unitPrice": arr[15],
"isPromotion": arr[16]
};
//update relevant date
if (d.saleAmount !== undefined) {
saleCount += 1;
$("#sale_count").html(saleCount)
saleAmount += parseFloat(d.saleAmount)
$("#sale_amount").html(Math.round(saleAmount * 100) / 100)
$("#sale_date").html(d.saleDate)
let index = categories.indexOf(d.categoryName)
// if specify category doesn't exist
if (index === -1) {
categories.push(d.categoryName);
cateData.push(parseFloat(d.saleAmount));
cateChart.series[0].addPoint({name: d.categoryName, y: saleAmount}, true);
} else {
//update amount of the existed category
cateData[index] += Math.round(parseFloat(d.saleAmount) * 100) / 100;
}
}
}
//do something when close websocket
function closeWebSocket() {
websocket.close();
}
}
});
</script>
</body>
</html>
启动
首先启动SaleApplication
然后启动SaleProudcer
最后打开网页:
实现成功
再打一剂希望麻醉了痛苦
只能进 不能退 扛不起 放不下
不得不走下去