Bootstrap

SMU Summer 2024 Contest Round 6

Many Formulas

思路:字符串最多 10 10 10位,所以直接所有加号在哪个位置

void solve() {
    string s; cin >> s;
    int n = s.size() - 1;
    int ans = 0;
    for (int i = 0; i < (1 << n); i ++) {
        string str = s;
        int c = 0;
        for (int j = 0; j < n; j ++) {
            if (i >> j & 1) {
                str = str.substr(0, j + 1 + c) + '+' + str.substr(j + 1 + c);
                c ++;
            }
        }
        stack<int> stk;
        bool ok = false;
        for (int j = 0; j < str.size(); j ++) {
            int k = j;
            int sum = 0;
            if (str[j] >= '0' && str[j] <= '9') {
                while (str[k] >= '0' && str[k] <= '9' && k < str.size()) {
                    sum = sum * 10 + (str[k] - '0');
                    k ++;
                }
                j = k - 1;
                stk.push(sum);
            }
            if (!ok) {
                if (str[j] == '+') ok = true;
            } else {
                int x = stk.top(); stk.pop();
                int y = stk.top(); stk.pop();
                stk.push(x + y);
                ok = false;
            }
        }
        ans += stk.top();
    }
    cout << ans << '\n';
}

[Tak and Cards]http://162.14.124.219/contest/1010/problem/B()

思路:背包 d p dp dp d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k]表示前 i i i个物品中选 j j j个物品凑出总和为 k k k的方案数,可以将第一维优化,题目内存够,没必要,记得初始化选零个,体积为零时候的方案数,之后直接按照背包 d p dp dp进行转移即可

int dp[N][N][N * N];

void solve() {
    int n, A; cin >> n >> A;
    vector<int> a(n + 1);
    for (int i = 1; i <= n; i ++) {
        cin >> a[i];
    }
    int ans = 0;
    for (int i = 0; i <= n; i ++) dp[i][0][0] = 1, dp[i][0][1] = dp[i][1][0] = 0;
    for (int i = 1; i <= n; i ++) {
        for (int j = 1; j <= i; j ++) {
            for (int k = 1; k <= 2500; k ++) {
                dp[i][j][k] = dp[i - 1][j][k];
                if (k >= a[i]) dp[i][j][k] += dp[i - 1][j - 1][k - a[i]];
            }
        }
    }
    for (int i = 1; i <= n; i ++) {
        ans += dp[n][i][i * A];
    }
    cout << ans << '\n';
}

Wall

思路:求两个点之间的最短路,数据范围小,直接 O ( n 3 ) O(n^3) O(n3) f l o y d floyd floyd即可

`int g[11][11];

void solve() {
    int n, m; cin >> n >> m;
    vector<vector<int>> dp(11, vector<int> (11, INF));
    for (int i = 0; i <= 9; i ++) {
        for (int j = 0; j <= 9; j ++) {
            cin >> dp[i][j];
        }
    }
    for (int k = 0; k < 10; k ++) {
        for (int i = 0; i < 10; i ++) {
            for (int j = 0; j < 10; j ++) {
                dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);
            }
        }
    }
    int ans = 0;
    for (int i = 1; i <= n; i ++) {
        for (int j = 1; j <= m; j ++) {
            int x; cin >> x;
            if (x != -1 && x != 1) ans += dp[x][1];
        }
    }
    cout << ans << '\n';
}

Coloring Edges on Tree

思路:直接 d f s dfs dfs就行,每次染色都从 1 1 1开始,只要和这个点的父节点练的那条边的颜色不一样就行

void solve() {
    int n; cin >> n;
    vector<vector<int>> g(n + 1);
    vector<array<int, 2>> a(n + 1);
    vector<int> fa(n + 1);
    for (int i = 1; i < n; i ++)  {
        int u, v; cin >> u >> v;
        g[u].push_back(v);
        g[v].push_back(u);
        a[i] = {u, v};
    }
    int cnt = 0;
    map<array<int, 2>, int> mp;
    auto dfs = [&](auto && dfs, int u, int f) -> void {
        int idx = 0, ii = mp[{f, u}];
        for (auto v : g[u]) {
            if (v == f) continue;
            idx ++;
            if (idx == ii) idx ++;
            mp[{u, v}] = idx;
            dfs(dfs, v, u);
        }
        cnt = max(idx, cnt);
    };
    dfs(dfs, 1, 0);
    cout << cnt << '\n';
    for (int i = 1; i < n; i ++) {
        cout << mp[ {a[i][0], a[i][1]}] << '\n';
    }
}

Fault-tolerant Network

思路:本质上要让所有电脑联通,只需要将第一行的 1 1 1 n n n两个点和下面一行连起来,第二行的 1 1 1 n n n两个点和第一行连起来就行,先分别求出来四个顶点连到对应行的最小值,要注意有可能第一行和第二行的直接连接端点的情况

void solve() {
    cnt ++;
    int n; cin >> n;
    vector<int> a(n + 1), b(n + 1);
    for (int i = 1; i <= n; i ++) {
        cin >> a[i];
    }
    for (int i = 1; i <= n; i ++) {
        cin >> b[i];
    }
    int ans = abs(a[1] - b[1]) + abs(a[n] - b[n]), t;
    int r1, r2, r3, r4;
    r1 = r2 = r3 = r4 = INF;
    for (int i = 1; i <= n; i ++) r1 = min(r1, abs(a[1] - b[i])), r2 = min(r2, abs(a[n] - b[i]));
    for (int i = 1; i <= n; i ++) r3 = min(r3, abs(b[1] - a[i])), r4 = min(r4, abs(b[n] - a[i]));
    ans = min(ans, r1 + r2 + r3 + r4);
    ans = min(ans, abs(a[1] - b[1]) + r2 + r4);
    ans = min(ans, abs(a[n] - b[n]) + r1 + r3);
    ans = min(ans, abs(a[1] - b[n]) + abs(a[n] - b[1]));
    ans = min(ans, abs(a[1] - b[n]) + r2 + r3);
    ans = min(ans, abs(a[n] - b[1]) + r1 + r4);
    cout << ans << '\n';
}

Nearest Excluded Points

思路:先找出距离已知点为 1 1 1的点,记录答案,放到队列里面,然后按照正常的 b f s bfs bfs更新就行,只有遇到这个点没有被记录答案并且是题目给的点,就更新答案,放到队列里面,这个点的答案就是由前面拓展点的答案,因为 b f s bfs bfs第一次遇见一定是最短的

int dx[] = {0, 1, 0, -1};
int dy[] = {1, 0, -1, 0};

void solve() {
    int n; cin >> n;
    map<pair<int, int>, int> vis;
    map<pair<int, int>, pair<int, int>> ans;
    vector<pair<int, int>> a(n + 1);
    for (int i = 1; i <= n; i ++) {
        cin >> a[i].first >> a[i].second;
        vis[ {a[i].first, a[i].second}] = 1;
    }
    queue<pair<int, int>> q;
    for (int i = 1; i <= n; i ++) {
        for (int j = 0; j < 4; j ++) {
            int x = a[i].first + dx[j];
            int y = a[i].second + dy[j];
            if (!vis.count({x, y})) {
                q.push({a[i].first, a[i].second});
                ans[ {a[i].first, a[i].second}] = {x, y};
            }
        }
    }
    while (q.size()) {
        auto [x, y] = q.front();
        q.pop();
        for (int j = 0; j < 4; j ++) {
            int tx = x + dx[j];
            int ty = y + dy[j];
            if (vis.count({tx, ty}) && !ans.count({tx, ty})) {
                ans[ {tx, ty}] = ans[ {x, y}];
                vis[ {tx, ty}] = 1;
                q.push({tx, ty});
            }
        }
    }
    for (int i = 1; i <= n; i ++) {
        auto [t1, t2] = ans[ {a[i].first, a[i].second}];
        cout << t1 << ' ' << t2 << '\n';
    }
}

Vacation Query

思路:类似线段树维护最大字段和,这个题的区间修改是把区间进行取反操作,但我们不用真的进行取反操作,只用记录每个区间里连续 0 0 0 1 1 1的最大值就行,进行取反的时候交换这个区间里面维护 0 0 0 1 1 1数量的变量的值就相当于取反了,这个思路太巧秒了


template<class T>
struct SegmentTree {
#define ls u << 1
#define rs u << 1 | 1
    struct Info {
        int l, r;
        int op;
        T mx0, mx1;
        T lsum0, lsum1;
        T rsum0, rsum1;
    };
    vector<Info> tr;
    vector<T> a;
    SegmentTree(const vector<T> &init) {
        int n = init.size() - 1;
        tr.resize(n * 4 + 1);
        a = init;
        build(1, 1, n);
    }
    Info merge(Info &u, Info l, Info r) {
        int lvl = l.r - l.l + 1;
        int rvl = r.r - r.l + 1;

        u.mx0 = max({l.mx0, r.mx0, l.rsum0 + r.lsum0});
        u.mx1 = max({l.mx1, r.mx1, l.rsum1 + r.lsum1});

        if (lvl == l.lsum0) u.lsum0 = l.lsum0 + r.lsum0;
        else u.lsum0 = l.lsum0;
        if (lvl == l.lsum1) u.lsum1 = l.lsum1 + r.lsum1;
        else u.lsum1 = l.lsum1;

        if (rvl == r.rsum0) u.rsum0 = l.rsum0 + r.rsum0;
        else u.rsum0 = r.rsum0;
        if (rvl == r.lsum1) u.rsum1 = l.rsum1 + r.rsum1;
        else u.rsum1 = r.rsum1;

        return u;
    }
    void calc(Info &u) {
        swap(u.mx0, u.mx1);
        swap(u.lsum0, u.lsum1);
        swap(u.rsum0, u.rsum1);
        u.op ^= 1;
    }
    void pushup(int u) {
        // debug1(u);
        tr[u] = merge(tr[u], tr[ls], tr[rs]);
    }
    void pushdown(int u) {
        auto [_, __, op, _1, _2, _3, _4, _5, _6] = tr[u];
        if (op) {
            calc(tr[ls]);
            calc(tr[rs]);
            tr[u].op ^= 1;
        }
    }
    void build(int u, int l, int r) {
        if (!a[l]) tr[u] = {l, r, 0, 1, 0, 1, 0, 1, 0};
        else tr[u] = {l, r, 0, 0, 1, 0, 1, 0, 1};
        if (l == r) return ;
        int mid = l + r >> 1;
        build(ls, l, mid);
        build(rs, mid + 1, r);
        pushup(u);
    }
    void modify(int u, int l, int r) {
        if (tr[u].l >= l && tr[u].r <= r) {
            calc(tr[u]);
            return ;
        }
        pushdown(u);
        int mid = tr[u].l + tr[u].r >> 1;
        if (l <= mid) modify(ls, l, r);
        if (r > mid) modify(rs, l, r);
        pushup(u);
    }
    Info query(int u, int l, int r) {
        if (tr[u].l >= l && tr[u].r <= r) return tr[u];
        pushdown(u);
        int mid = tr[u].l + tr[u].r >> 1;
        if (r <= mid) return query(ls, l, r);
        if (l > mid) return query(rs, l, r);
        Info t = merge(t, query(ls, l, r), query(rs, l, r));
        pushup(u);
        return t;
    }
};

void solve() {
    int n, q; cin >> n >> q;
    string s; cin >> s;
    vector<int> a(n + 1);
    for (int i = 0; i < s.size(); i ++) {
        a[i + 1] = (s[i] == '1');
    }
    SegmentTree<int> sg(a);
    while (q --) {
        int c, l, r; cin >> c >> l >> r;
        if (c == 1) {
            sg.modify(1, l, r);
        } else {
            cout << sg.query(1, l, r).mx1 << '\n';
        }
    }
}
;