Bootstrap

tensorflow从入门到放弃---第二篇

案例五:通过tensorflow实现一个简单的卷积神经网络


import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import input_data


mnist = input_data.read_data_sets('data/', one_hot=True)
trainimg   = mnist.train.images
trainlabel = mnist.train.labels
testimg    = mnist.test.images
testlabel  = mnist.test.labels
print ("MNIST ready")


n_input  = 784  #像素点是784个
n_output = 10  #10分类
weights  = {
        'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64], stddev=0.1)),        #卷积核的h,卷积核的w, 输入深度,输出特征图个数(输出深度)
        'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.1)),    
        'wd1': tf.Variable(tf.random_normal([7*7*128, 1024], stddev=0.1)), #在第二个pooling层之后得到的是一个7*7*128
        'wd2': tf.Variable(tf.random_normal([1024, n_output], stddev=0.1))
    }
biases   = {
        'bc1': tf.Variable(tf.random_normal([64], stddev=0.1)),
        'bc2': tf.Variable(tf.random_normal([128], stddev=0.1)),
        'bd1': tf.Variable(tf.random_normal([1024], stddev=0.1)),
        'bd2': tf.Variable(tf.random_normal([n_output], stddev=0.1))
    }


def conv_basic(_input, _w, _b, _keepratio):
        # INPUT输入层,对输入格式转换成tensorflow支持的格式即四维 其中-1表示让tensorflow自己推断
        _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1]) 


        # CONV LAYER 1 调用tensorflow的nn模块,如果对conv2d不了解,可以print(help(tf.nn.conv2d))
        _conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME')

        _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1']))
        _pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') #其中ksize的前三个参数分别是batch_size,h, w , 
        _pool_dr1 = tf.nn.dropout(_pool1, _keepratio)  #随机杀死一些层,keepratio表示保留的比率


        # CONV LAYER 2
        _conv2 = tf.nn.conv2d(_pool_dr1, _w['wc2'], strides=[1, 1, 1, 1], padding='SAME')
        _conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b['bc2']))
        _pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        _pool_dr2 = tf.nn.dropout(_pool2, _keepratio)


        # VECTORIZE 把池化层输出的7*7*128变成list
        _dense1 = tf.reshape(_pool_dr2, [-1, _w['wd1'].get_shape().as_list()[0]])


        # FULLY CONNECTED LAYER 1
        _fc1 = tf.nn.relu(tf.add(tf.matmul(_dense1, _w['wd1']), _b['bd1']))
        _fc_dr1 = tf.nn.dropout(_fc1, _keepratio)


        # FULLY CONNECTED LAYER 2
        _out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2'])


        # RETURN
        out = { 'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool1_dr1': _pool_dr1,
            'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'dense1': _dense1,
            'fc1': _fc1, 'fc_dr1': _fc_dr1, 'out': _out
        }
        return out
print ("CNN READY")


a = tf.Variable(tf.random_normal([3, 3, 1, 64], stddev=0.1))
print (a)
a = tf.print(a, [a], "a: ")


init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_output])
keepratio = tf.placeholder(tf.float32)


# FUNCTIONS
_pred = conv_basic(x, weights, biases, keepratio)['out']
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y))
optm = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
_corr = tf.equal(tf.argmax(_pred,1), tf.argmax(y,1)) 
accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) 

    
# SAVER

save_step=1

saver=tf.train.Saver(max_to_keep=3)


print ("GRAPH READY")


#迭代的过程

do_train=1

init = tf.global_variables_initializer()

sess = tf.Session()
sess.run(init)
training_epochs = 15   #迭代15次
batch_size      = 16      #每一个batch有16个样本
display_step    = 1

if do_train==1:
for epoch in range(training_epochs):
    avg_cost = 0.
    #total_batch = int(mnist.train.num_examples/batch_size)
    total_batch = 10
    # Loop over all batches
    for i in range(total_batch):
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        # Fit training using batch data
        sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keepratio:0.7})

        # Compute average loss
        avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})/total_batch


    # Display logs per epoch step
    if epoch % display_step == 0: 
        print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
        train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})
        print (" Training accuracy: %.3f" % (train_acc))
        #test_acc = sess.run(accr, feed_dict={x: testimg, y: testlabel, keepratio:1.})

        #print (" Test accuracy: %.3f" % (test_acc))


    #Save Net 每一个epoch都要保存

     if epoch % save_step  == 0:

         saver.save(sess,"save/nets/cnn_mnist_basic.ckpt-"+str(epoch))

print ("OPTIMIZATION FINISHED")


#下面对模型进行读取以及测试

if  do_train==0:

    epoch=training_epochs-1

    saver.restore(sess,"save/nets/cnn_mnist_basic.ckpt-"+str(epoch))

    test_acc=sess.run(accr,feed_dict{x:testing,y:testlabel,keepratio:1})

   prin("TEST ACCURACY: %.3f" %(test_acc))


案例六:模型的保存

#保存模型 

import tensorflow as tf
v1 = tf.Variable(tf.random_normal([1,2]), name="v1")
v2 = tf.Variable(tf.random_normal([2,3]), name="v2")
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
    sess.run(init_op)
    print ("V1:",sess.run(v1))  
    print ("V2:",sess.run(v2))
    saver_path = saver.save(sess, "save/model.ckpt")  #保存在save文件夹里面
    print ("Model saved in file: ", saver_path) 


#读取模型

import tensorflow as tf
v1 = tf.Variable(tf.random_normal([1,2]), name="v1")  #设置v1为一行两列
v2 = tf.Variable(tf.random_normal([2,3]), name="v2")  #设置v2为两行三列
saver = tf.train.Saver()

with tf.Session() as sess:
    saver.restore(sess, "save/model.ckpt")

    print ("V1:",sess.run(v1))  
    print ("V2:",sess.run(v2))
    print ("Model restored")



;