Bootstrap

Markdown公式大全

1 基本公式

1.1 上下标

$$
A_1^2
\\
B_{12}
\\
2^{x^2+y}
$$

A 1 2 B 12 2 x 2 + y A_1^2 \\ B_{12} \\ 2^{x^2+y} A12B122x2+y

1.2 分数

$$
\frac{x}{1+x^2}
\\
\frac{\frac{1}{2}+x}{y}
\\
\tfrac{a}{b}
\frac{a}{b}
$$

x 1 + x 2 1 2 + x y a b a b \frac{x}{1+x^2} \\ \frac{\frac{1}{2}+x}{y} \\ \tfrac{a}{b} \frac{a}{b} 1+x2xy21+xbaba

1.3 开根号

$$
\sqrt{x}
\sqrt[3]{x}
$$

x x 3 \sqrt{x} \sqrt[3]{x} x 3x

1.4 指数

$$
\exp \\
e \\
$$

exp ⁡ e \exp \\ e \\ expe

1.5 对数

$$
\log \\
\lg \\
\ln
$$

log ⁡ lg ⁡ ln ⁡ \log \\ \lg \\ \ln loglgln

1.6 三角函数

$$
\bot \\
\angle \\
30^\circ \\
\sin \\
\cos \\
\tan \\
\cot \\
\sec \\
\csc 
$$

⊥ ∠ 3 0 ∘ sin ⁡ cos ⁡ tan ⁡ cot ⁡ sec ⁡ csc ⁡ \bot \\ \angle \\ 30^\circ \\ \sin \\ \cos \\ \tan \\ \cot \\ \sec \\ \csc 30sincostancotseccsc

1.7 集合

$$
\emptyset	\\
\in			\\
\notin		\\
\supset		\\
\supseteq	\\
\bigcap		\\
\bigcup		\\
\bigvee		\\
\bigwedge	\\
\ni
$$

∅ ∈ ∉ ⊃ ⊇ ⋂ ⋃ ⋁ ⋀ ∋ \emptyset \\ \in \\ \notin \\ \supset \\ \supseteq \\ \bigcap \\ \bigcup \\ \bigvee \\ \bigwedge \\ \ni /

1.8 组合数

$$
\binom{n}{k}
\tbinom{n}{k}
$$

( n k ) ( n k ) \binom{n}{k} \tbinom{n}{k} (kn)(kn)

1.9 取模

$$
x \pmod a
\\
2\mod{x}
$$

x ( m o d a ) 2 m o d    x x \pmod a \\ 2\mod{x} x(moda)2modx

1.10 极限

$$
\lim_{n \rightarrow +\infty} \frac{1}{n}
$$

lim ⁡ n → + ∞ 1 n \lim_{n \rightarrow +\infty} \frac{1}{n} n+limn1

1.11 导数

$$
a'
a''
a^{\prime}
$$

a ′ a ′ ′ a ′ a' a'' a^{\prime} aa′′a

1.12 积分

$$
\int_{1}^{2}
\intop_{2}^{1}
\oint
\smallint
\\
\iint
\oiint
\iiint
\oiiint
$$

∫ 1 2 ∫ 2 1 ∮ ∫ ∬ ∯ ∭ ∰ \int_{1}^{2} \intop_{2}^{1} \oint \smallint \\ \iint \oiint \iiint \oiiint 1221

1.13 微分

$$
\nabla
\\
\partial x
\\
\mathrm{d}x
\\
\dot x
\\
\ddot y
\\
\Delta
$$

∇ ∂ x d x x ˙ y ¨ Δ \nabla \\ \partial x \\ \mathrm{d}x \\ \dot x \\ \ddot y \\ \Delta xdxx˙y¨Δ

1.14 累积/累乘/极限

$$
\sum_{i=1}^{k}
\displaystyle\sum_{i=1}^n
\textstyle\sum_{i=1}^n
\\
\prod_{i=1}^{k}
\displaystyle\prod_{i=1}^n
\textstyle\prod_{i=1}^n
\\
\lim_{k \to \infty}
\lim\limits_{k \to \infty}
\lim\nolimits_{k \to \infty}
$$

∑ i = 1 k ∑ i = 1 n ∑ i = 1 n ∏ i = 1 k ∏ i = 1 n ∏ i = 1 n lim ⁡ k → ∞ lim ⁡ k → ∞ lim ⁡ k → ∞ \sum_{i=1}^{k} \displaystyle\sum_{i=1}^n \textstyle\sum_{i=1}^n \\ \prod_{i=1}^{k} \displaystyle\prod_{i=1}^n \textstyle\prod_{i=1}^n \\ \lim_{k \to \infty} \lim\limits_{k \to \infty} \lim\nolimits_{k \to \infty} i=1ki=1ni=1ni=1ki=1ni=1nlimkklimlimk

1.15 方程组

$$
\begin{aligned}
f(x)
&= (x+1)^2\\
&= x^2 + 2x + 1
\end{aligned}
$$

f ( x ) = ( x + 1 ) 2 = x 2 + 2 x + 1 \begin{aligned} f(x) &= (x+1)^2\\ &= x^2 + 2x + 1 \end{aligned} f(x)=(x+1)2=x2+2x+1

$$
f(x) =
\begin{cases}
a &\text{if b} \\
b &\text{if a} \\
\end{cases}
$$

f ( x ) = { a if b b if a f(x) = \begin{cases} a &\text{if b} \\ b &\text{if a} \\ \end{cases} f(x)={abif bif a

$$
\begin{cases}
\begin{aligned}
x + 2y &= 1\\
3x - y &= 5
\end{aligned}
\end{cases}
$$

{ x + 2 y = 1 3 x − y = 5 \begin{cases} \begin{aligned} x + 2y &= 1\\ 3x - y &= 5 \end{aligned} \end{cases} {x+2y3xy=1=5

$$
g(x,y) =
\left\{
\begin{array}{rcl}
\frac{M_g - d}{M_f-b}[f(x,y)-b]+d & & {b \leq f(x,y) \leq M_f} \\
F^*_L & & {S_L \leq 0 < S_M} \\
F^*_R & & {S_M \leq 0 < S_R} \\
F_R   & & {S_R \leq 0}
\end{array}
\right.
$$

g ( x , y ) = { M g − d M f − b [ f ( x , y ) − b ] + d b ≤ f ( x , y ) ≤ M f F L ∗ S L ≤ 0 < S M F R ∗ S M ≤ 0 < S R F R S R ≤ 0 g(x,y) = \left\{ \begin{array}{rcl} \frac{M_g - d}{M_f-b}[f(x,y)-b]+d & & {b \leq f(x,y) \leq M_f} \\ F^*_L & & {S_L \leq 0 < S_M} \\ F^*_R & & {S_M \leq 0 < S_R} \\ F_R & & {S_R \leq 0} \end{array} \right. g(x,y)= MfbMgd[f(x,y)b]+dFLFRFRbf(x,y)MfSL0<SMSM0<SRSR0

1.16 矩阵

  • 在起始、结束标记处用下列词替换 matrix
  • pmatrix :小括号边框
  • bmatrix :中括号边框
  • Bmatrix :大括号边框
  • vmatrix :单竖线边框
  • Vmatrix :双竖线边框
$$
A =
\begin{matrix}
a & b\\
c & d
\end{matrix}
$$

A = a b c d A = \begin{matrix} a & b\\ c & d \end{matrix} A=acbd

$$
B =
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}
$$

B = ( a b c d ) B = \begin{pmatrix} a & b\\ c & d \end{pmatrix} B=(acbd)

$$
B =
\begin{bmatrix}
a & b\\
c & d
\end{bmatrix}
$$

B = [ a b c d ] B = \begin{bmatrix} a & b\\ c & d \end{bmatrix} B=[acbd]

$$
B =
\begin{Bmatrix}
a & b\\
c & d
\end{Bmatrix}
$$

B = { a b c d } B = \begin{Bmatrix} a & b\\ c & d \end{Bmatrix} B={acbd}

$$
C =
\begin{vmatrix}
a & b\\
c & d
\end{vmatrix}
$$

C = ∣ a b c d ∣ C = \begin{vmatrix} a & b\\ c & d \end{vmatrix} C= acbd

$$
B =
\begin{Vmatrix}
a & b\\
c & d
\end{Vmatrix}
$$

B = ∥ a b c d ∥ B = \begin{Vmatrix} a & b\\ c & d \end{Vmatrix} B= acbd

$$
[A\ b] = 
\begin{bmatrix}
\begin{array}{c c c|c}
a_{11} & a_{12} & a_{13} & b_1\\
a_{21} & a_{22} & a_{23} & b_2\\
a_{31} & a_{32} & a_{33} & b_3\\
\end{array}
\end{bmatrix}
$$

[ A   b ] = [ a 11 a 12 a 13 b 1 a 21 a 22 a 23 b 2 a 31 a 32 a 33 b 3 ] [A\ b] = \begin{bmatrix} \begin{array}{c c c|c} a_{11} & a_{12} & a_{13} & b_1\\ a_{21} & a_{22} & a_{23} & b_2\\ a_{31} & a_{32} & a_{33} & b_3\\ \end{array} \end{bmatrix} [A b]= a11a21a31a12a22a32a13a23a33b1b2b3

$$
\begin{array}{c:c:c}
a & b & c \\
\hline
d & e & f \\
\hdashline
g & h & i
\end{array}
$$

a b c d e f g h i \begin{array}{c:c:c} a & b & c \\ \hline d & e & f \\ \hdashline g & h & i \end{array} adgbehcfi

$$
L_{n\times n} =
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots &\ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn} \\
\end{bmatrix}
$$

L n × n = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] L_{n\times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots &\ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{bmatrix} Ln×n= a11a21an1a12a22an2a1na2nann

2 修饰符号

2.1 简单的帽子

$$
\hat{\theta}
\widehat{AB}
\\
\bar{y}
\overline{AB}
\\
\tilde{a}
\widetilde{ac}
\\
\bar{a}
\acute{a}
\check{a}
\grave{a}
\\
\dot{a}
\ddot{a} \\
\vec a	\\
\vec {ab} \\
\overrightarrow{xy}
$$

θ ^ A B ^ y ˉ A B ‾ a ~ a c ~ a ˉ a ˊ a ˇ a ˋ a ˙ a ¨ a ⃗ a b ⃗ x y → \hat{\theta} \widehat{AB} \\ \bar{y} \overline{AB} \\ \tilde{a} \widetilde{ac} \\ \bar{a} \acute{a} \check{a} \grave{a} \\ \dot{a} \ddot{a} \\ \vec a \\ \vec {ab} \\ \overrightarrow{xy} θ^AB yˉABa~ac aˉaˊaˇaˋa˙a¨a ab xy

2.2 帽子和袜子

$$
\overleftarrow{AB}
\overrightarrow{AB}
\overleftrightarrow{AB}
\\
\underleftarrow{AB}
\underrightarrow{AB}
\underleftrightarrow{AB}
\\
\overbrace{AB}
\underbrace{AB}
\\
\overline{AB}
\underline{AB}
$$

A B ← A B → A B ↔ A B ← A B → A B ↔ A B ⏞ A B ⏟ A B ‾ A B ‾ \overleftarrow{AB} \overrightarrow{AB} \overleftrightarrow{AB} \\ \underleftarrow{AB} \underrightarrow{AB} \underleftrightarrow{AB} \\ \overbrace{AB} \underbrace{AB} \\ \overline{AB} \underline{AB} AB AB AB AB AB ABAB ABABAB

2.3 盒子和帽子

$$
\overbrace{a+b+c}^{\text{note}}
\\
\underbrace{a+b+c}_{\text{note}}
\\
\boxed{\pi=3.14}
\\
\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}
$$

a + b + c ⏞ note a + b + c ⏟ note π = 3.14 a + b + c ⏟ 1.0 + d ⏞ 2.0 \overbrace{a+b+c}^{\text{note}} \\ \underbrace{a+b+c}_{\text{note}} \\ \boxed{\pi=3.14} \\ \overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0} a+b+c notenote a+b+cπ=3.14a+1.0 b+c+d 2.0

2.4 各种括号

$$
(x+y) \\
[x+y] \\
\{ x+y \} \\
\langle x+y \rangle \\
|x+y| \\
\| x+y \|
$$

( x + y ) [ x + y ] { x + y } ⟨ x + y ⟩ ∣ x + y ∣ ∥ x + y ∥ (x+y) \\ [x+y] \\ \{ x+y \} \\ \langle x+y \rangle \\ |x+y| \\ \| x+y \| (x+y)[x+y]{x+y}x+yx+yx+y

$$
( \big( \Big( \bigg( \Bigg( \\
) \big) \Big) \bigg) \Bigg) \\
[ \big[ \Big[ \bigg[ \Bigg[ \\
] \big] \Big] \bigg] \Bigg] \\
\{ \big\{ \Big\{ \bigg\{ \Bigg\{ \\
\} \big\} \Big\} \bigg\} \Bigg\} \\
| \big| \Big| \bigg| \Bigg| \\
\| \big\| \Big\| \bigg\| \Bigg\| \\
\langle \big\langle \Big\langle \bigg\langle \Bigg\langle \\
\rangle \big\rangle \Big\rangle \bigg\rangle \Bigg\rangle \\
\lceil \big\lceil \Big\lceil \bigg\lceil \Bigg\lceil \\
\rceil \big\rceil \Big\rceil \bigg\rceil \Bigg\rceil \\
\lfloor \big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \\
\rfloor \big\rfloor \Big\rfloor \bigg\rfloor \Bigg\rfloor \\
$$

( ( ( ( ( ) ) ) ) ) [ [ [ [ [ ] ] ] ] ] { { { { { } } } } } ∣ ∣ ∣ ∣ ∣ ∥ ∥ ∥ ∥ ∥ ⟨ ⟨ ⟨ ⟨ ⟨ ⟩ ⟩ ⟩ ⟩ ⟩ ⌈ ⌈ ⌈ ⌈ ⌈ ⌉ ⌉ ⌉ ⌉ ⌉ ⌊ ⌊ ⌊ ⌊ ⌊ ⌋ ⌋ ⌋ ⌋ ⌋ ( \big( \Big( \bigg( \Bigg( \\ ) \big) \Big) \bigg) \Bigg) \\ [ \big[ \Big[ \bigg[ \Bigg[ \\ ] \big] \Big] \bigg] \Bigg] \\ \{ \big\{ \Big\{ \bigg\{ \Bigg\{ \\ \} \big\} \Big\} \bigg\} \Bigg\} \\ | \big| \Big| \bigg| \Bigg| \\ \| \big\| \Big\| \bigg\| \Bigg\| \\ \langle \big\langle \Big\langle \bigg\langle \Bigg\langle \\ \rangle \big\rangle \Big\rangle \bigg\rangle \Bigg\rangle \\ \lceil \big\lceil \Big\lceil \bigg\lceil \Bigg\lceil \\ \rceil \big\rceil \Big\rceil \bigg\rceil \Bigg\rceil \\ \lfloor \big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \\ \rfloor \big\rfloor \Big\rfloor \bigg\rfloor \Bigg\rfloor \\ ((((()))))[[[[[]]]]]{{{{{}}}}}

$$
[]
<>
|-2|
\{\}
$$

[ ] < > ∣ − 2 ∣ { } [] <> |-2| \{\} []<>2∣{}

$$
\lgroup x \rgroup \\
\lVert a \rVert \\
\lceil 2.6 \rceil \\
\lfloor 1.2 \rfloor \\
$$

⟮ x ⟯ ∥ a ∥ ⌈ 2.6 ⌉ ⌊ 1.2 ⌋ \lgroup x \rgroup \\ \lVert a \rVert \\ \lceil 2.6 \rceil \\ \lfloor 1.2 \rfloor \\ xa2.61.2

$$
\ulcorner
\urcorner
\llcorner
\lrcorner
$$

⌜ ⌝ ⌞ ⌟ \ulcorner \urcorner \llcorner \lrcorner

$$
\langle a+b \rangle \\
\lceil a+b \rceil \\
\lfloor a+b \rfloor \\
\lbrace a+b \rbrace \\
\overline{a+b+c+d} \\
\underline{a+b+c+d}
$$

⟨ a + b ⟩ ⌈ a + b ⌉ ⌊ a + b ⌋ { a + b } a + b + c + d ‾ a + b + c + d ‾ \langle a+b \rangle \\ \lceil a+b \rceil \\ \lfloor a+b \rfloor \\ \lbrace a+b \rbrace \\ \overline{a+b+c+d} \\ \underline{a+b+c+d} a+ba+ba+b{a+b}a+b+c+da+b+c+d

3 特殊字符

3.1 希腊字母

序号大写小写英语音标注音英语汉语名称常用指代意义
1 A \Alpha A α \alpha α/'ælfə/alpha阿尔法角度、系数、角加速度、第一个、电离度、转化率
2 B \Beta B β \beta β/'beɪtə/beta贝塔角度、系数、磁通系数
3 Γ \Gamma Γ γ \gamma γ/'gæmə/gamma伽马/伽玛电导系数、角度、比热容比
4 Δ \Delta Δ δ \delta δ/'deltə/delta德尔塔变化量、焓变熵变屈光度、一元二次方程中的判别式化学位移
5 E \Epsilon E ϵ \epsilon ϵ/'epsɪlɒn/epsilon艾普西隆对数之基数、介电常数电容率应变
6 Z \Zeta Z ζ \zeta ζ/'zi:tə/zeta泽塔系数、方位角阻抗相对黏度
7 H \Eta H η \eta η/'i:tə/eta伊塔迟滞系数、机械效率
8 Θ \Theta Θ θ \theta θ/'θi:tə/theta西塔温度、角度
9 I \Iota I ι \iota ι/aɪ’əʊtə/iota约(yāo)塔微小、一点
10 K \Kappa K κ \kappa κ/'kæpə/kappa卡帕介质常数、绝热指数
11 Λ \Lambda Λ λ \lambda λ/'læmdə/lambda拉姆达波长、体积、导热系数
12 M \Mu M μ \mu μ/mju:/mu磁导率、微、动摩擦系(因)数、流体动力黏度、货币单位、莫比乌斯函数
13 N \Nu N ν \nu ν/nju:/nu磁阻系数、流体运动粘度、光波频率、化学计量数
14 Ξ \Xi Ξ ξ \xi ξ/ksi/xi克西 随机变量、(小)区间内的一个未知特定值
15 O \Omicron O ο \omicron ο/əuˈmaikrən/omicron奥米克戎 /奥密克戎高阶无穷小函数
16 Π \Pi Π π \pi π/paɪ/pi圆周率、π(n)表示不大于n的质数个数、连乘
17 P \Rho P ρ \rho ρ/rəʊ/rho电阻率、柱坐标和极坐标中的极径、密度曲率半径
18 Σ \Sigma Σ σ \sigma σ/'sɪɡmə/sigma西格马总和、表面密度、跨导应力电导率
19 T \Tau T τ \tau τ/taʊ/tau 时间常数切应力、2π(两倍圆周率)
20 Υ \Upsilon Υ υ \upsilon υ/ˈipsɪlon/upsilon宇普西隆 位移
21 Φ \Phi Φ ϕ \phi ϕ/faɪ/phi磁通量电通量、角、透镜焦度热流量电势、直径、欧拉函数、相位、孔隙度
22 X \Chi X χ \chi χ/kaɪ/chi希/恺统计学中有卡方(χ^2)分布
23 Ψ \Psi Ψ ψ \psi ψ/psaɪ/psi普西角速、介质电通量、ψ函数、磁链
24 Ω \Omega Ω ω \omega ω/oʊ’meɡə/omega奥米伽/欧米伽欧姆、角速度角频率、交流电的电角度、化学中的质量分数、有机物的不饱和度

3.2 常见图形

$$
\Box
\square
\blacksquare
\triangle
\triangledown
\blacktriangle
\diamond
\Diamond
\star
\bigstar
\circ
\bullet
\bigcirc
\bigodot
$$

□ □ ■ △ ▽ ▲ ⋄ ◊ ⋆ ★ ∘ ∙ ◯ ⨀ \Box \square \blacksquare \triangle \triangledown \blacktriangle \diamond \Diamond \star \bigstar \circ \bullet \bigcirc \bigodot □□■▽▲

$$
\diamondsuit
\clubsuit
\heartsuit
\spadesuit
$$

♢ ♣ ♡ ♠ \diamondsuit \clubsuit \heartsuit \spadesuit ♢♣♡♠

$$
\angle
\measuredangle
\top
\bot
\infty
$$

∠ ∡ ⊤ ⊥ ∞ \angle \measuredangle \top \bot \infty ⊤⊥∞

$$
\checkmark
\dagger
\ddagger
\yen
\$
$$

✓ † ‡ ¥ $ \checkmark \dagger \ddagger \yen \$ ¥$

3.3 其他符号

$$
\hbar \\
\imath \\
\jmath \\
\ell \\
\Re \\
\Im \\
\aleph \\
\wp \\
\mho \\
\partial \\
\prime \\
\infty \\
\nabla \\
\triangle \\
\bot \\
\top \\
\angle \\
\surd \\
\flat \\
\natural \\
\sharp \\
$$

ℏ ı ȷ ℓ ℜ ℑ ℵ ℘ ℧ ∂ ′ ∞ ∇ △ ⊥ ⊤ ∠ √ ♭ ♮ ♯ \hbar \\ \imath \\ \jmath \\ \ell \\ \Re \\ \Im \\ \aleph \\ \wp \\ \mho \\ \partial \\ \prime \\ \infty \\ \nabla \\ \triangle \\ \bot \\ \top \\ \angle \\ \surd \\ \flat \\ \natural \\ \sharp \\

$$
\hat{a} \\
\check{a} \\
\tilde{a} \\
\grave{a} \\
\dot{a} \\
\ddot{a} \\
\bar{a} \\
\vec{a} \\
\widehat{a} \\
\acute{a} \\
\breve{a} \\
\widetilde{a} \\
$$

a ^ a ˇ a ~ a ˋ a ˙ a ¨ a ˉ a ⃗ a ^ a ˊ a ˘ a ~ \hat{a} \\ \check{a} \\ \tilde{a} \\ \grave{a} \\ \dot{a} \\ \ddot{a} \\ \bar{a} \\ \vec{a} \\ \widehat{a} \\ \acute{a} \\ \breve{a} \\ \widetilde{a} \\ a^aˇa~aˋa˙a¨aˉa a aˊa˘a

$$
\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\
\mathbb{abcdefghijklmnopqrstuvwxyz} \\
\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\
\mathcal{abcdefghijklmnopqrstuvwxyz} \\
\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\
\mathfrak{abcdefghijklmnopqrstuvwxyz} \\
$$

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\ \mathbb{abcdefghijklmnopqrstuvwxyz} \\ \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\ \mathcal{abcdefghijklmnopqrstuvwxyz} \\ \mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\ \mathfrak{abcdefghijklmnopqrstuvwxyz} \\ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

4 运算符

4.1 算术运算符

$$
\times
/
\div
\cdot
\#
\%
$$

× / ÷ ⋅ # % + \times / \div \cdot \# \% + ×/÷#%+

$$
\circ
\ast
\star
\otimes
\oplus
\odot
$$

∘ ∗ ⋆ ⊗ ⊕ ⊙ \circ \ast \star \otimes \oplus \odot

$$
\pm
\mp
\dotplus
\divideontimes
$$

± ∓ ∔ ⋇ \pm \mp \dotplus \divideontimes ±∔⋇

4.2 比较运算符

$$
=
= \not
\equiv
\approx
\approxeq
\cong
\sim
\neq
\not=
$$

= ≢ ≈ ≊ ≅ ∼ ≠ ≠ = \not \equiv \approx \approxeq \cong \sim \neq \not= =≡≈≅∼==

$$
<
>
\le
\ge
\gg
\ll
$$

< ≤ ≥ ≫ ≪ < \le \ge \gg \ll <≤≥≫≪

$$
\curlyeqprec
\curlyeqsucc
\prec
\succ
\preceq
\succeq
$$

⋞ ⋟ ≺ ≻ ⪯ ⪰ \curlyeqprec \curlyeqsucc \prec \succ \preceq \succeq ⋞⋟≺≻⪯⪰

$$
x \leq y \\
x \geq y \\
x \nleq y \\
x \not \leq y \\
x \ngeq y \\
x \not \geq y \\
x \neq y \\
x \approx y \\
x \equiv y
$$

x ≤ y x ≥ y x ≰ y x ≰ y x ≱ y x ≱ y x ≠ y x ≈ y x ≡ y x \leq y \\ x \geq y \\ x \nleq y \\ x \not \leq y \\ x \ngeq y \\ x \not \geq y \\ x \neq y \\ x \approx y \\ x \equiv y xyxyxyxyxyxyx=yxyxy

4.3 集合运算符

$$
\in
\owns \not
\subset \not
\supset
\subseteq
\supseteq
\\
\cap
\cup
\land
\lor
\\
\neg
\emptyset
\varnothing
\\
\because
\forall
\exists
\therefore
$$

∈ ∋ ⊄ ⊅ ⊆ ⊇ ∩ ∪ ∧ ∨ ¬ ∅ ∅ ∵ ∀ ∃ ∴ \in \owns \not \subset \not \supset \subseteq \supseteq \\ \cap \cup \land \lor \\ \neg \emptyset \varnothing \\ \because \forall \exists \therefore ∈∋⊃⊆⊇¬∅∀∃

$$
\cap
\cup
\land
\lor
\sqcup
\sqcap
$$

∩ ∪ ∧ ∨ ⊔ ⊓ \cap \cup \land \lor \sqcup \sqcap

5 箭头

$$
\gets
\leftarrow
\to
\rightarrow
\leftrightarrow
\\
\uparrow
\downarrow
\updownarrow
$$

← ← → → ↔ ↑ ↓ ↕ \gets \leftarrow \to \rightarrow \leftrightarrow \\ \uparrow \downarrow \updownarrow ←←→→↔↑↓↕

$$
\Leftarrow
\Rightarrow
\Leftrightarrow
\iff
\\
\Uparrow
\Downarrow
\Updownarrow
$$

⇐ ⇒ ⇔    ⟺    ⇑ ⇓ ⇕ \Leftarrow \Rightarrow \Leftrightarrow \iff \\ \Uparrow \Downarrow \Updownarrow ⇐⇒⇔⇑⇓⇕

$$
\nearrow
\searrow
\swarrow
\nwarrow
$$

↗ ↘ ↙ ↖ \nearrow \searrow \swarrow \nwarrow ↗↘↙↖

$$
\longleftarrow
\longrightarrow
\longleftrightarrow
\Longleftarrow
\Longrightarrow
\Longleftrightarrow
\longmapsto
$$

⟵ ⟶ ⟷ ⟸ ⟹ ⟺ ⟼ \longleftarrow \longrightarrow \longleftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \longmapsto ⟵⟶⟷⟸⟹⟺⟼

$$
\xrightarrow{over}
\xrightarrow[over]{}
\xrightarrow[under]{over}
\xleftarrow[]{over}
\xleftarrow[under]{}
\xleftarrow[under]{over}
$$

→ o v e r → o v e r → u n d e r o v e r ← o v e r ← u n d e r ← u n d e r o v e r \xrightarrow{over} \xrightarrow[over]{} \xrightarrow[under]{over} \xleftarrow[]{over} \xleftarrow[under]{} \xleftarrow[under]{over} over overover underover underover under

6 其他

6.1 空间间距

$$
A\!B
\\
AB
\\
A\thinspace B
\\
A\:B
\\
A\ B
\\
A \enspace B
\\
A\quad B
\\
A\qquad B
$$

A  ⁣ B A B A   B A   B A   B A B A B A B A\!B \\ AB \\ A\thinspace B \\ A\:B \\ A\ B \\ A \enspace B \\ A\quad B \\ A\qquad B ABABABABA BABABAB

6.2 字体颜色和大小

$$
\textcolor{blue}{F=ma}
\\
\textcolor{#00ff00}{F=ma}
\\
\textcolor{#ff0000}{F=ma}
\\
\color{blue} one\ line
\\
nothing
$$

F = m a F = m a F = m a o n e   l i n e n o t h i n g \textcolor{blue}{F=ma} \\ \textcolor{#00ff00}{F=ma} \\ \textcolor{#ff0000}{F=ma} \\ \color{blue} one\ line \\ nothing F=maF=maF=maone linenothing

$$
\colorbox{#00ff00}{F=ma}
\\
\colorbox{aqua}{A}
\\
\fcolorbox{red}{aqua}{A}
$$

F=ma A A \colorbox{#00ff00}{F=ma} \\ \colorbox{aqua}{A} \\ \fcolorbox{red}{aqua}{A} F=maAA

$$
AB
\Huge AB
\huge AB
\\
AB
\LARGE AB
\Large AB
\large AB
\\
AB
\small AB
\tiny AB
$$

A B A B A B A B A B A B A B A B A B A B AB \Huge AB \huge AB \\ AB \LARGE AB \Large AB \large AB \\ AB \small AB \tiny AB ABABABABABABABABABAB

6.3 划掉

$$
\cancel{5}
\bcancel{5}
\xcancel{ABC}
\not =
$$

5 5 A B C ≠ \cancel{5} \bcancel{5} \xcancel{ABC} \not = 5 5 ABC =

6.4 省略号

  • 横省略号:\cdots
  • 竖省略号:\vdots
  • 斜省略号:\ddots
  • 底省略号: \ldots 效果显示为 1 , 2 , … , n 1,2,\ldots,n 1,2,,n
$$
\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}} \\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}} \\
{\vdots}&{\vdots}&{\ddots}&{\vdots} \\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}} \\
\end{bmatrix}
$$

[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] \begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}} \\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}} \\ {\vdots}&{\vdots}&{\ddots}&{\vdots} \\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}} \\ \end{bmatrix} a11a21am1a12a22am2a1na2namn

6.4 对齐

$$
\begin{multline*}
p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3 \\
-12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3
\end{multline*}
$$

KaTeX parse error: No such environment: multline* at position 8: \begin{̲m̲u̲l̲t̲l̲i̲n̲e̲*̲}̲ p(x) = 3x^6 + …

$$
\begin{align*}
p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3 \\
-12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3
\end{align*}
$$

p ( x ) = 3 x 6 + 14 x 5 y + 590 x 4 y 2 + 19 x 3 y 3 − 12 x 2 y 4 − 12 x y 5 + 2 y 6 − a 3 b 3 \begin{align*} p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3 \\ -12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3 \end{align*} p(x)=3x6+14x5y+590x4y2+19x3y312x2y412xy5+2y6a3b3

7 宏

$$
\def\Normal#1#2#3
{
\frac{1}{\sqrt{2 \pi} #3} \exp{\left[ -\frac{(#1-#2)^2}{2 #3^2} \right]}
}

f(x) = \Normal(x)(u_1)(\sigma_1) \\
f(y) = \Normal(y)(u_2)(\sigma_2) \\
f(z) = \Normal(z)(u_3)(\sigma_3) \\
$$

f ( x ) = 1 2 π ) ( u 1 ) ( σ 1 ) exp ⁡ [ − ( ( − x ) 2 2 ) ( u 1 ) ( σ 1 ) 2 ] f ( y ) = 1 2 π ) ( u 2 ) ( σ 2 ) exp ⁡ [ − ( ( − y ) 2 2 ) ( u 2 ) ( σ 2 ) 2 ] f ( z ) = 1 2 π ) ( u 3 ) ( σ 3 ) exp ⁡ [ − ( ( − z ) 2 2 ) ( u 3 ) ( σ 3 ) 2 ] \def \Normal#1#2#3 { \frac{1}{\sqrt{2 \pi} #3} \exp{\left[ -\frac{(#1-#2)^2}{2 #3^2} \right]} } f(x) = \Normal(x)(u_1)(\sigma_1) \\ f(y) = \Normal(y)(u_2)(\sigma_2) \\ f(z) = \Normal(z)(u_3)(\sigma_3) \\ f(x)=2π )(u1)(σ1)1exp[2)(u1)(σ1)2((x)2]f(y)=2π )(u2)(σ2)1exp[2)(u2)(σ2)2((y)2]f(z)=2π )(u3)(σ3)1exp[2)(u3)(σ3)2((z)2]

$$
\def
\EXP
{
e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3  + \cdots
}
\EXP
$$

e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + ⋯ \def \EXP { e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots } \EXP ex=1+x+2!1x2+3!1x3+

;