Markdown公式大全
1 基本公式
1.1 上下标
$$
A_1^2
\\
B_{12}
\\
2^{x^2+y}
$$
A 1 2 B 12 2 x 2 + y A_1^2 \\ B_{12} \\ 2^{x^2+y} A12B122x2+y
1.2 分数
$$
\frac{x}{1+x^2}
\\
\frac{\frac{1}{2}+x}{y}
\\
\tfrac{a}{b}
\frac{a}{b}
$$
x 1 + x 2 1 2 + x y a b a b \frac{x}{1+x^2} \\ \frac{\frac{1}{2}+x}{y} \\ \tfrac{a}{b} \frac{a}{b} 1+x2xy21+xbaba
1.3 开根号
$$
\sqrt{x}
\sqrt[3]{x}
$$
x x 3 \sqrt{x} \sqrt[3]{x} x3x
1.4 指数
$$
\exp \\
e \\
$$
exp e \exp \\ e \\ expe
1.5 对数
$$
\log \\
\lg \\
\ln
$$
log lg ln \log \\ \lg \\ \ln loglgln
1.6 三角函数
$$
\bot \\
\angle \\
30^\circ \\
\sin \\
\cos \\
\tan \\
\cot \\
\sec \\
\csc
$$
⊥ ∠ 3 0 ∘ sin cos tan cot sec csc \bot \\ \angle \\ 30^\circ \\ \sin \\ \cos \\ \tan \\ \cot \\ \sec \\ \csc ⊥∠30∘sincostancotseccsc
1.7 集合
$$
\emptyset \\
\in \\
\notin \\
\supset \\
\supseteq \\
\bigcap \\
\bigcup \\
\bigvee \\
\bigwedge \\
\ni
$$
∅ ∈ ∉ ⊃ ⊇ ⋂ ⋃ ⋁ ⋀ ∋ \emptyset \\ \in \\ \notin \\ \supset \\ \supseteq \\ \bigcap \\ \bigcup \\ \bigvee \\ \bigwedge \\ \ni ∅∈∈/⊃⊇⋂⋃⋁⋀∋
1.8 组合数
$$
\binom{n}{k}
\tbinom{n}{k}
$$
( n k ) ( n k ) \binom{n}{k} \tbinom{n}{k} (kn)(kn)
1.9 取模
$$
x \pmod a
\\
2\mod{x}
$$
x ( m o d a ) 2 m o d x x \pmod a \\ 2\mod{x} x(moda)2modx
1.10 极限
$$
\lim_{n \rightarrow +\infty} \frac{1}{n}
$$
lim n → + ∞ 1 n \lim_{n \rightarrow +\infty} \frac{1}{n} n→+∞limn1
1.11 导数
$$
a'
a''
a^{\prime}
$$
a ′ a ′ ′ a ′ a' a'' a^{\prime} a′a′′a′
1.12 积分
$$
\int_{1}^{2}
\intop_{2}^{1}
\oint
\smallint
\\
\iint
\oiint
\iiint
\oiiint
$$
∫ 1 2 ∫ 2 1 ∮ ∫ ∬ ∯ ∭ ∰ \int_{1}^{2} \intop_{2}^{1} \oint \smallint \\ \iint \oiint \iiint \oiiint ∫122∫1∮∫∬∬∭∭
1.13 微分
$$
\nabla
\\
\partial x
\\
\mathrm{d}x
\\
\dot x
\\
\ddot y
\\
\Delta
$$
∇ ∂ x d x x ˙ y ¨ Δ \nabla \\ \partial x \\ \mathrm{d}x \\ \dot x \\ \ddot y \\ \Delta ∇∂xdxx˙y¨Δ
1.14 累积/累乘/极限
$$
\sum_{i=1}^{k}
\displaystyle\sum_{i=1}^n
\textstyle\sum_{i=1}^n
\\
\prod_{i=1}^{k}
\displaystyle\prod_{i=1}^n
\textstyle\prod_{i=1}^n
\\
\lim_{k \to \infty}
\lim\limits_{k \to \infty}
\lim\nolimits_{k \to \infty}
$$
∑ i = 1 k ∑ i = 1 n ∑ i = 1 n ∏ i = 1 k ∏ i = 1 n ∏ i = 1 n lim k → ∞ lim k → ∞ lim k → ∞ \sum_{i=1}^{k} \displaystyle\sum_{i=1}^n \textstyle\sum_{i=1}^n \\ \prod_{i=1}^{k} \displaystyle\prod_{i=1}^n \textstyle\prod_{i=1}^n \\ \lim_{k \to \infty} \lim\limits_{k \to \infty} \lim\nolimits_{k \to \infty} i=1∑ki=1∑n∑i=1n∏i=1ki=1∏n∏i=1nlimk→∞k→∞limlimk→∞
1.15 方程组
$$
\begin{aligned}
f(x)
&= (x+1)^2\\
&= x^2 + 2x + 1
\end{aligned}
$$
f ( x ) = ( x + 1 ) 2 = x 2 + 2 x + 1 \begin{aligned} f(x) &= (x+1)^2\\ &= x^2 + 2x + 1 \end{aligned} f(x)=(x+1)2=x2+2x+1
$$
f(x) =
\begin{cases}
a &\text{if b} \\
b &\text{if a} \\
\end{cases}
$$
f ( x ) = { a if b b if a f(x) = \begin{cases} a &\text{if b} \\ b &\text{if a} \\ \end{cases} f(x)={abif bif a
$$
\begin{cases}
\begin{aligned}
x + 2y &= 1\\
3x - y &= 5
\end{aligned}
\end{cases}
$$
{ x + 2 y = 1 3 x − y = 5 \begin{cases} \begin{aligned} x + 2y &= 1\\ 3x - y &= 5 \end{aligned} \end{cases} {x+2y3x−y=1=5
$$
g(x,y) =
\left\{
\begin{array}{rcl}
\frac{M_g - d}{M_f-b}[f(x,y)-b]+d & & {b \leq f(x,y) \leq M_f} \\
F^*_L & & {S_L \leq 0 < S_M} \\
F^*_R & & {S_M \leq 0 < S_R} \\
F_R & & {S_R \leq 0}
\end{array}
\right.
$$
g ( x , y ) = { M g − d M f − b [ f ( x , y ) − b ] + d b ≤ f ( x , y ) ≤ M f F L ∗ S L ≤ 0 < S M F R ∗ S M ≤ 0 < S R F R S R ≤ 0 g(x,y) = \left\{ \begin{array}{rcl} \frac{M_g - d}{M_f-b}[f(x,y)-b]+d & & {b \leq f(x,y) \leq M_f} \\ F^*_L & & {S_L \leq 0 < S_M} \\ F^*_R & & {S_M \leq 0 < S_R} \\ F_R & & {S_R \leq 0} \end{array} \right. g(x,y)=⎩ ⎨ ⎧Mf−bMg−d[f(x,y)−b]+dFL∗FR∗FRb≤f(x,y)≤MfSL≤0<SMSM≤0<SRSR≤0
1.16 矩阵
- 在起始、结束标记处用下列词替换
matrix
pmatrix
:小括号边框bmatrix
:中括号边框Bmatrix
:大括号边框vmatrix
:单竖线边框Vmatrix
:双竖线边框
$$
A =
\begin{matrix}
a & b\\
c & d
\end{matrix}
$$
A = a b c d A = \begin{matrix} a & b\\ c & d \end{matrix} A=acbd
$$
B =
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}
$$
B = ( a b c d ) B = \begin{pmatrix} a & b\\ c & d \end{pmatrix} B=(acbd)
$$
B =
\begin{bmatrix}
a & b\\
c & d
\end{bmatrix}
$$
B = [ a b c d ] B = \begin{bmatrix} a & b\\ c & d \end{bmatrix} B=[acbd]
$$
B =
\begin{Bmatrix}
a & b\\
c & d
\end{Bmatrix}
$$
B = { a b c d } B = \begin{Bmatrix} a & b\\ c & d \end{Bmatrix} B={acbd}
$$
C =
\begin{vmatrix}
a & b\\
c & d
\end{vmatrix}
$$
C = ∣ a b c d ∣ C = \begin{vmatrix} a & b\\ c & d \end{vmatrix} C= acbd
$$
B =
\begin{Vmatrix}
a & b\\
c & d
\end{Vmatrix}
$$
B = ∥ a b c d ∥ B = \begin{Vmatrix} a & b\\ c & d \end{Vmatrix} B= acbd
$$
[A\ b] =
\begin{bmatrix}
\begin{array}{c c c|c}
a_{11} & a_{12} & a_{13} & b_1\\
a_{21} & a_{22} & a_{23} & b_2\\
a_{31} & a_{32} & a_{33} & b_3\\
\end{array}
\end{bmatrix}
$$
[ A b ] = [ a 11 a 12 a 13 b 1 a 21 a 22 a 23 b 2 a 31 a 32 a 33 b 3 ] [A\ b] = \begin{bmatrix} \begin{array}{c c c|c} a_{11} & a_{12} & a_{13} & b_1\\ a_{21} & a_{22} & a_{23} & b_2\\ a_{31} & a_{32} & a_{33} & b_3\\ \end{array} \end{bmatrix} [A b]= a11a21a31a12a22a32a13a23a33b1b2b3
$$
\begin{array}{c:c:c}
a & b & c \\
\hline
d & e & f \\
\hdashline
g & h & i
\end{array}
$$
a b c d e f g h i \begin{array}{c:c:c} a & b & c \\ \hline d & e & f \\ \hdashline g & h & i \end{array} adgbehcfi
$$
L_{n\times n} =
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots &\ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn} \\
\end{bmatrix}
$$
L n × n = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] L_{n\times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots &\ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{bmatrix} Ln×n= a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann
2 修饰符号
2.1 简单的帽子
$$
\hat{\theta}
\widehat{AB}
\\
\bar{y}
\overline{AB}
\\
\tilde{a}
\widetilde{ac}
\\
\bar{a}
\acute{a}
\check{a}
\grave{a}
\\
\dot{a}
\ddot{a} \\
\vec a \\
\vec {ab} \\
\overrightarrow{xy}
$$
θ ^ A B ^ y ˉ A B ‾ a ~ a c ~ a ˉ a ˊ a ˇ a ˋ a ˙ a ¨ a ⃗ a b ⃗ x y → \hat{\theta} \widehat{AB} \\ \bar{y} \overline{AB} \\ \tilde{a} \widetilde{ac} \\ \bar{a} \acute{a} \check{a} \grave{a} \\ \dot{a} \ddot{a} \\ \vec a \\ \vec {ab} \\ \overrightarrow{xy} θ^AB yˉABa~ac aˉaˊaˇaˋa˙a¨aabxy
2.2 帽子和袜子
$$
\overleftarrow{AB}
\overrightarrow{AB}
\overleftrightarrow{AB}
\\
\underleftarrow{AB}
\underrightarrow{AB}
\underleftrightarrow{AB}
\\
\overbrace{AB}
\underbrace{AB}
\\
\overline{AB}
\underline{AB}
$$
A B ← A B → A B ↔ A B ← A B → A B ↔ A B ⏞ A B ⏟ A B ‾ A B ‾ \overleftarrow{AB} \overrightarrow{AB} \overleftrightarrow{AB} \\ \underleftarrow{AB} \underrightarrow{AB} \underleftrightarrow{AB} \\ \overbrace{AB} \underbrace{AB} \\ \overline{AB} \underline{AB} ABABAB ABAB ABAB ABABAB
2.3 盒子和帽子
$$
\overbrace{a+b+c}^{\text{note}}
\\
\underbrace{a+b+c}_{\text{note}}
\\
\boxed{\pi=3.14}
\\
\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}
$$
a + b + c ⏞ note a + b + c ⏟ note π = 3.14 a + b + c ⏟ 1.0 + d ⏞ 2.0 \overbrace{a+b+c}^{\text{note}} \\ \underbrace{a+b+c}_{\text{note}} \\ \boxed{\pi=3.14} \\ \overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0} a+b+c notenote a+b+cπ=3.14a+1.0 b+c+d 2.0
2.4 各种括号
$$
(x+y) \\
[x+y] \\
\{ x+y \} \\
\langle x+y \rangle \\
|x+y| \\
\| x+y \|
$$
( x + y ) [ x + y ] { x + y } ⟨ x + y ⟩ ∣ x + y ∣ ∥ x + y ∥ (x+y) \\ [x+y] \\ \{ x+y \} \\ \langle x+y \rangle \\ |x+y| \\ \| x+y \| (x+y)[x+y]{x+y}⟨x+y⟩∣x+y∣∥x+y∥
$$
( \big( \Big( \bigg( \Bigg( \\
) \big) \Big) \bigg) \Bigg) \\
[ \big[ \Big[ \bigg[ \Bigg[ \\
] \big] \Big] \bigg] \Bigg] \\
\{ \big\{ \Big\{ \bigg\{ \Bigg\{ \\
\} \big\} \Big\} \bigg\} \Bigg\} \\
| \big| \Big| \bigg| \Bigg| \\
\| \big\| \Big\| \bigg\| \Bigg\| \\
\langle \big\langle \Big\langle \bigg\langle \Bigg\langle \\
\rangle \big\rangle \Big\rangle \bigg\rangle \Bigg\rangle \\
\lceil \big\lceil \Big\lceil \bigg\lceil \Bigg\lceil \\
\rceil \big\rceil \Big\rceil \bigg\rceil \Bigg\rceil \\
\lfloor \big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \\
\rfloor \big\rfloor \Big\rfloor \bigg\rfloor \Bigg\rfloor \\
$$
( ( ( ( ( ) ) ) ) ) [ [ [ [ [ ] ] ] ] ] { { { { { } } } } } ∣ ∣ ∣ ∣ ∣ ∥ ∥ ∥ ∥ ∥ ⟨ ⟨ ⟨ ⟨ ⟨ ⟩ ⟩ ⟩ ⟩ ⟩ ⌈ ⌈ ⌈ ⌈ ⌈ ⌉ ⌉ ⌉ ⌉ ⌉ ⌊ ⌊ ⌊ ⌊ ⌊ ⌋ ⌋ ⌋ ⌋ ⌋ ( \big( \Big( \bigg( \Bigg( \\ ) \big) \Big) \bigg) \Bigg) \\ [ \big[ \Big[ \bigg[ \Bigg[ \\ ] \big] \Big] \bigg] \Bigg] \\ \{ \big\{ \Big\{ \bigg\{ \Bigg\{ \\ \} \big\} \Big\} \bigg\} \Bigg\} \\ | \big| \Big| \bigg| \Bigg| \\ \| \big\| \Big\| \bigg\| \Bigg\| \\ \langle \big\langle \Big\langle \bigg\langle \Bigg\langle \\ \rangle \big\rangle \Big\rangle \bigg\rangle \Bigg\rangle \\ \lceil \big\lceil \Big\lceil \bigg\lceil \Bigg\lceil \\ \rceil \big\rceil \Big\rceil \bigg\rceil \Bigg\rceil \\ \lfloor \big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \\ \rfloor \big\rfloor \Big\rfloor \bigg\rfloor \Bigg\rfloor \\ ((((()))))[[[[[]]]]]{{{{{}}}}}∣ ∥ ⟨⟨⟨⟨⟨⟩⟩⟩⟩⟩⌈⌈⌈⌈⌈⌉⌉⌉⌉⌉⌊⌊⌊⌊⌊⌋⌋⌋⌋⌋
$$
[]
<>
|-2|
\{\}
$$
[ ] < > ∣ − 2 ∣ { } [] <> |-2| \{\} []<>∣−2∣{}
$$
\lgroup x \rgroup \\
\lVert a \rVert \\
\lceil 2.6 \rceil \\
\lfloor 1.2 \rfloor \\
$$
⟮ x ⟯ ∥ a ∥ ⌈ 2.6 ⌉ ⌊ 1.2 ⌋ \lgroup x \rgroup \\ \lVert a \rVert \\ \lceil 2.6 \rceil \\ \lfloor 1.2 \rfloor \\ ⟮x⟯∥a∥⌈2.6⌉⌊1.2⌋
$$
\ulcorner
\urcorner
\llcorner
\lrcorner
$$
⌜ ⌝ ⌞ ⌟ \ulcorner \urcorner \llcorner \lrcorner ┌┐└┘
$$
\langle a+b \rangle \\
\lceil a+b \rceil \\
\lfloor a+b \rfloor \\
\lbrace a+b \rbrace \\
\overline{a+b+c+d} \\
\underline{a+b+c+d}
$$
⟨ a + b ⟩ ⌈ a + b ⌉ ⌊ a + b ⌋ { a + b } a + b + c + d ‾ a + b + c + d ‾ \langle a+b \rangle \\ \lceil a+b \rceil \\ \lfloor a+b \rfloor \\ \lbrace a+b \rbrace \\ \overline{a+b+c+d} \\ \underline{a+b+c+d} ⟨a+b⟩⌈a+b⌉⌊a+b⌋{a+b}a+b+c+da+b+c+d
3 特殊字符
3.1 希腊字母
序号 | 大写 | 小写 | 英语音标注音 | 英语 | 汉语名称 | 常用指代意义 |
---|---|---|---|---|---|---|
1 | A \Alpha A | α \alpha α | /'ælfə/ | alpha | 阿尔法 | 角度、系数、角加速度、第一个、电离度、转化率 |
2 | B \Beta B | β \beta β | /'beɪtə/ | beta | 贝塔 | 角度、系数、磁通系数 |
3 | Γ \Gamma Γ | γ \gamma γ | /'gæmə/ | gamma | 伽马/伽玛 | 电导系数、角度、比热容比 |
4 | Δ \Delta Δ | δ \delta δ | /'deltə/ | delta | 德尔塔 | 变化量、焓变、熵变、屈光度、一元二次方程中的判别式、化学位移 |
5 | E \Epsilon E | ϵ \epsilon ϵ | /'epsɪlɒn/ | epsilon | 艾普西隆 | 对数之基数、介电常数、电容率、应变 |
6 | Z \Zeta Z | ζ \zeta ζ | /'zi:tə/ | zeta | 泽塔 | 系数、方位角、阻抗、相对黏度 |
7 | H \Eta H | η \eta η | /'i:tə/ | eta | 伊塔 | 迟滞系数、机械效率 |
8 | Θ \Theta Θ | θ \theta θ | /'θi:tə/ | theta | 西塔 | 温度、角度 |
9 | I \Iota I | ι \iota ι | /aɪ’əʊtə/ | iota | 约(yāo)塔 | 微小、一点 |
10 | K \Kappa K | κ \kappa κ | /'kæpə/ | kappa | 卡帕 | 介质常数、绝热指数 |
11 | Λ \Lambda Λ | λ \lambda λ | /'læmdə/ | lambda | 拉姆达 | 波长、体积、导热系数 |
12 | M \Mu M | μ \mu μ | /mju:/ | mu | 谬 | 磁导率、微、动摩擦系(因)数、流体动力黏度、货币单位、莫比乌斯函数 |
13 | N \Nu N | ν \nu ν | /nju:/ | nu | 纽 | 磁阻系数、流体运动粘度、光波频率、化学计量数 |
14 | Ξ \Xi Ξ | ξ \xi ξ | /ksi/ | xi | 克西 | 随机变量、(小)区间内的一个未知特定值 |
15 | O \Omicron O | ο \omicron ο | /əuˈmaikrən/ | omicron | 奥米克戎 /奥密克戎 | 高阶无穷小函数 |
16 | Π \Pi Π | π \pi π | /paɪ/ | pi | 派 | 圆周率、π(n)表示不大于n的质数个数、连乘 |
17 | P \Rho P | ρ \rho ρ | /rəʊ/ | rho | 柔 | 电阻率、柱坐标和极坐标中的极径、密度、曲率半径 |
18 | Σ \Sigma Σ | σ \sigma σ | /'sɪɡmə/ | sigma | 西格马 | 总和、表面密度、跨导、应力、电导率 |
19 | T \Tau T | τ \tau τ | /taʊ/ | tau | 陶 | 时间常数、切应力、2π(两倍圆周率) |
20 | Υ \Upsilon Υ | υ \upsilon υ | /ˈipsɪlon/ | upsilon | 宇普西隆 | 位移 |
21 | Φ \Phi Φ | ϕ \phi ϕ | /faɪ/ | phi | 斐 | 磁通量、电通量、角、透镜焦度、热流量、电势、直径、欧拉函数、相位、孔隙度 |
22 | X \Chi X | χ \chi χ | /kaɪ/ | chi | 希/恺 | 统计学中有卡方(χ^2)分布 |
23 | Ψ \Psi Ψ | ψ \psi ψ | /psaɪ/ | psi | 普西 | 角速、介质电通量、ψ函数、磁链 |
24 | Ω \Omega Ω | ω \omega ω | /oʊ’meɡə/ | omega | 奥米伽/欧米伽 | 欧姆、角速度、角频率、交流电的电角度、化学中的质量分数、有机物的不饱和度 |
3.2 常见图形
$$
\Box
\square
\blacksquare
\triangle
\triangledown
\blacktriangle
\diamond
\Diamond
\star
\bigstar
\circ
\bullet
\bigcirc
\bigodot
$$
□ □ ■ △ ▽ ▲ ⋄ ◊ ⋆ ★ ∘ ∙ ◯ ⨀ \Box \square \blacksquare \triangle \triangledown \blacktriangle \diamond \Diamond \star \bigstar \circ \bullet \bigcirc \bigodot □□■△▽▲⋄◊⋆★∘∙◯⨀
$$
\diamondsuit
\clubsuit
\heartsuit
\spadesuit
$$
♢ ♣ ♡ ♠ \diamondsuit \clubsuit \heartsuit \spadesuit ♢♣♡♠
$$
\angle
\measuredangle
\top
\bot
\infty
$$
∠ ∡ ⊤ ⊥ ∞ \angle \measuredangle \top \bot \infty ∠∡⊤⊥∞
$$
\checkmark
\dagger
\ddagger
\yen
\$
$$
✓ † ‡ ¥ $ \checkmark \dagger \ddagger \yen \$ ✓†‡¥$
3.3 其他符号
$$
\hbar \\
\imath \\
\jmath \\
\ell \\
\Re \\
\Im \\
\aleph \\
\wp \\
\mho \\
\partial \\
\prime \\
\infty \\
\nabla \\
\triangle \\
\bot \\
\top \\
\angle \\
\surd \\
\flat \\
\natural \\
\sharp \\
$$
ℏ ı ȷ ℓ ℜ ℑ ℵ ℘ ℧ ∂ ′ ∞ ∇ △ ⊥ ⊤ ∠ √ ♭ ♮ ♯ \hbar \\ \imath \\ \jmath \\ \ell \\ \Re \\ \Im \\ \aleph \\ \wp \\ \mho \\ \partial \\ \prime \\ \infty \\ \nabla \\ \triangle \\ \bot \\ \top \\ \angle \\ \surd \\ \flat \\ \natural \\ \sharp \\ ℏℓℜℑℵ℘℧∂′∞∇△⊥⊤∠√♭♮♯
$$
\hat{a} \\
\check{a} \\
\tilde{a} \\
\grave{a} \\
\dot{a} \\
\ddot{a} \\
\bar{a} \\
\vec{a} \\
\widehat{a} \\
\acute{a} \\
\breve{a} \\
\widetilde{a} \\
$$
a ^ a ˇ a ~ a ˋ a ˙ a ¨ a ˉ a ⃗ a ^ a ˊ a ˘ a ~ \hat{a} \\ \check{a} \\ \tilde{a} \\ \grave{a} \\ \dot{a} \\ \ddot{a} \\ \bar{a} \\ \vec{a} \\ \widehat{a} \\ \acute{a} \\ \breve{a} \\ \widetilde{a} \\ a^aˇa~aˋa˙a¨aˉaa aˊa˘a
$$
\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\
\mathbb{abcdefghijklmnopqrstuvwxyz} \\
\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\
\mathcal{abcdefghijklmnopqrstuvwxyz} \\
\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\
\mathfrak{abcdefghijklmnopqrstuvwxyz} \\
$$
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\ \mathbb{abcdefghijklmnopqrstuvwxyz} \\ \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\ \mathcal{abcdefghijklmnopqrstuvwxyz} \\ \mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\ \mathfrak{abcdefghijklmnopqrstuvwxyz} \\ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
4 运算符
4.1 算术运算符
$$
\times
/
\div
\cdot
\#
\%
$$
× / ÷ ⋅ # % + \times / \div \cdot \# \% + ×/÷⋅#%+
$$
\circ
\ast
\star
\otimes
\oplus
\odot
$$
∘ ∗ ⋆ ⊗ ⊕ ⊙ \circ \ast \star \otimes \oplus \odot ∘∗⋆⊗⊕⊙
$$
\pm
\mp
\dotplus
\divideontimes
$$
± ∓ ∔ ⋇ \pm \mp \dotplus \divideontimes ±∓∔⋇
4.2 比较运算符
$$
=
= \not
\equiv
\approx
\approxeq
\cong
\sim
\neq
\not=
$$
= ≢ ≈ ≊ ≅ ∼ ≠ ≠ = \not \equiv \approx \approxeq \cong \sim \neq \not= =≡≈≊≅∼==
$$
<
>
\le
\ge
\gg
\ll
$$
< ≤ ≥ ≫ ≪ < \le \ge \gg \ll <≤≥≫≪
$$
\curlyeqprec
\curlyeqsucc
\prec
\succ
\preceq
\succeq
$$
⋞ ⋟ ≺ ≻ ⪯ ⪰ \curlyeqprec \curlyeqsucc \prec \succ \preceq \succeq ⋞⋟≺≻⪯⪰
$$
x \leq y \\
x \geq y \\
x \nleq y \\
x \not \leq y \\
x \ngeq y \\
x \not \geq y \\
x \neq y \\
x \approx y \\
x \equiv y
$$
x ≤ y x ≥ y x ≰ y x ≰ y x ≱ y x ≱ y x ≠ y x ≈ y x ≡ y x \leq y \\ x \geq y \\ x \nleq y \\ x \not \leq y \\ x \ngeq y \\ x \not \geq y \\ x \neq y \\ x \approx y \\ x \equiv y x≤yx≥yx≰yx≤yx≱yx≥yx=yx≈yx≡y
4.3 集合运算符
$$
\in
\owns \not
\subset \not
\supset
\subseteq
\supseteq
\\
\cap
\cup
\land
\lor
\\
\neg
\emptyset
\varnothing
\\
\because
\forall
\exists
\therefore
$$
∈ ∋ ⊄ ⊅ ⊆ ⊇ ∩ ∪ ∧ ∨ ¬ ∅ ∅ ∵ ∀ ∃ ∴ \in \owns \not \subset \not \supset \subseteq \supseteq \\ \cap \cup \land \lor \\ \neg \emptyset \varnothing \\ \because \forall \exists \therefore ∈∋⊂⊃⊆⊇∩∪∧∨¬∅∅∵∀∃∴
$$
\cap
\cup
\land
\lor
\sqcup
\sqcap
$$
∩ ∪ ∧ ∨ ⊔ ⊓ \cap \cup \land \lor \sqcup \sqcap ∩∪∧∨⊔⊓
5 箭头
$$
\gets
\leftarrow
\to
\rightarrow
\leftrightarrow
\\
\uparrow
\downarrow
\updownarrow
$$
← ← → → ↔ ↑ ↓ ↕ \gets \leftarrow \to \rightarrow \leftrightarrow \\ \uparrow \downarrow \updownarrow ←←→→↔↑↓↕
$$
\Leftarrow
\Rightarrow
\Leftrightarrow
\iff
\\
\Uparrow
\Downarrow
\Updownarrow
$$
⇐ ⇒ ⇔ ⟺ ⇑ ⇓ ⇕ \Leftarrow \Rightarrow \Leftrightarrow \iff \\ \Uparrow \Downarrow \Updownarrow ⇐⇒⇔⟺⇑⇓⇕
$$
\nearrow
\searrow
\swarrow
\nwarrow
$$
↗ ↘ ↙ ↖ \nearrow \searrow \swarrow \nwarrow ↗↘↙↖
$$
\longleftarrow
\longrightarrow
\longleftrightarrow
\Longleftarrow
\Longrightarrow
\Longleftrightarrow
\longmapsto
$$
⟵ ⟶ ⟷ ⟸ ⟹ ⟺ ⟼ \longleftarrow \longrightarrow \longleftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \longmapsto ⟵⟶⟷⟸⟹⟺⟼
$$
\xrightarrow{over}
\xrightarrow[over]{}
\xrightarrow[under]{over}
\xleftarrow[]{over}
\xleftarrow[under]{}
\xleftarrow[under]{over}
$$
→ o v e r → o v e r → u n d e r o v e r ← o v e r ← u n d e r ← u n d e r o v e r \xrightarrow{over} \xrightarrow[over]{} \xrightarrow[under]{over} \xleftarrow[]{over} \xleftarrow[under]{} \xleftarrow[under]{over} overoveroverunderoverunderoverunder
6 其他
6.1 空间间距
$$
A\!B
\\
AB
\\
A\thinspace B
\\
A\:B
\\
A\ B
\\
A \enspace B
\\
A\quad B
\\
A\qquad B
$$
A B A B A B A B A B A B A B A B A\!B \\ AB \\ A\thinspace B \\ A\:B \\ A\ B \\ A \enspace B \\ A\quad B \\ A\qquad B ABABABABA BABABAB
6.2 字体颜色和大小
$$
\textcolor{blue}{F=ma}
\\
\textcolor{#00ff00}{F=ma}
\\
\textcolor{#ff0000}{F=ma}
\\
\color{blue} one\ line
\\
nothing
$$
F = m a F = m a F = m a o n e l i n e n o t h i n g \textcolor{blue}{F=ma} \\ \textcolor{#00ff00}{F=ma} \\ \textcolor{#ff0000}{F=ma} \\ \color{blue} one\ line \\ nothing F=maF=maF=maone linenothing
$$
\colorbox{#00ff00}{F=ma}
\\
\colorbox{aqua}{A}
\\
\fcolorbox{red}{aqua}{A}
$$
F=ma A A \colorbox{#00ff00}{F=ma} \\ \colorbox{aqua}{A} \\ \fcolorbox{red}{aqua}{A} F=maAA
$$
AB
\Huge AB
\huge AB
\\
AB
\LARGE AB
\Large AB
\large AB
\\
AB
\small AB
\tiny AB
$$
A B A B A B A B A B A B A B A B A B A B AB \Huge AB \huge AB \\ AB \LARGE AB \Large AB \large AB \\ AB \small AB \tiny AB ABABABABABABABABABAB
6.3 划掉
$$
\cancel{5}
\bcancel{5}
\xcancel{ABC}
\not =
$$
5 5 A B C ≠ \cancel{5} \bcancel{5} \xcancel{ABC} \not = 5 5 ABC =
6.4 省略号
- 横省略号:
\cdots
- 竖省略号:
\vdots
- 斜省略号:
\ddots
- 底省略号:
\ldots
效果显示为 1 , 2 , … , n 1,2,\ldots,n 1,2,…,n
$$
\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}} \\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}} \\
{\vdots}&{\vdots}&{\ddots}&{\vdots} \\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}} \\
\end{bmatrix}
$$
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] \begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}} \\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}} \\ {\vdots}&{\vdots}&{\ddots}&{\vdots} \\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}} \\ \end{bmatrix} a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
6.4 对齐
$$
\begin{multline*}
p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3 \\
-12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3
\end{multline*}
$$
KaTeX parse error: No such environment: multline* at position 8: \begin{̲m̲u̲l̲t̲l̲i̲n̲e̲*̲}̲ p(x) = 3x^6 + …
$$
\begin{align*}
p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3 \\
-12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3
\end{align*}
$$
p ( x ) = 3 x 6 + 14 x 5 y + 590 x 4 y 2 + 19 x 3 y 3 − 12 x 2 y 4 − 12 x y 5 + 2 y 6 − a 3 b 3 \begin{align*} p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3 \\ -12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3 \end{align*} p(x)=3x6+14x5y+590x4y2+19x3y3−12x2y4−12xy5+2y6−a3b3
7 宏
$$
\def\Normal#1#2#3
{
\frac{1}{\sqrt{2 \pi} #3} \exp{\left[ -\frac{(#1-#2)^2}{2 #3^2} \right]}
}
f(x) = \Normal(x)(u_1)(\sigma_1) \\
f(y) = \Normal(y)(u_2)(\sigma_2) \\
f(z) = \Normal(z)(u_3)(\sigma_3) \\
$$
f ( x ) = 1 2 π ) ( u 1 ) ( σ 1 ) exp [ − ( ( − x ) 2 2 ) ( u 1 ) ( σ 1 ) 2 ] f ( y ) = 1 2 π ) ( u 2 ) ( σ 2 ) exp [ − ( ( − y ) 2 2 ) ( u 2 ) ( σ 2 ) 2 ] f ( z ) = 1 2 π ) ( u 3 ) ( σ 3 ) exp [ − ( ( − z ) 2 2 ) ( u 3 ) ( σ 3 ) 2 ] \def \Normal#1#2#3 { \frac{1}{\sqrt{2 \pi} #3} \exp{\left[ -\frac{(#1-#2)^2}{2 #3^2} \right]} } f(x) = \Normal(x)(u_1)(\sigma_1) \\ f(y) = \Normal(y)(u_2)(\sigma_2) \\ f(z) = \Normal(z)(u_3)(\sigma_3) \\ f(x)=2π)(u1)(σ1)1exp[−2)(u1)(σ1)2((−x)2]f(y)=2π)(u2)(σ2)1exp[−2)(u2)(σ2)2((−y)2]f(z)=2π)(u3)(σ3)1exp[−2)(u3)(σ3)2((−z)2]
$$
\def
\EXP
{
e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots
}
\EXP
$$
e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + ⋯ \def \EXP { e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots } \EXP ex=1+x+2!1x2+3!1x3+⋯