Bootstrap

Shuffle调优之HashShuffleManager与SortShuffleManager

SortShuffleManager与HashShuffleManager两点不同:

1、SortShuffleManager会对每个reduce task要处理的数据,进行排序(默认的)。

2、SortShuffleManager会避免像HashShuffleManager那样,默认就去创建多份磁盘文件。一个task,只会写入一个磁盘文件,不同reduce task的数据,用offset来划分界定。
之前讲解的一些调优的点,比如consolidateFiles机制、map端缓冲、reduce端内存占比。这些对任何shuffle manager都是有用的。
在这里插入图片描述
spark.shuffle.manager:hash、sort、tungsten-sort(自己实现内存管理)
spark.shuffle.sort.bypassMergeThreshold:200
自己可以设定一个阈值,默认是200,当reduce task数量少于等于200;map task创建的输出文件小于等于200的;最后会将所有的输出文件合并为一份文件。

这样做的好处,就是避免了sort排序,节省了性能开销。而且还能将多个reduce task的文件合并成一份文件。节省了reduce task拉取数据的时候的磁盘IO的开销。

在spark 1.5.x以后,对于shuffle manager又出来了一种新的manager,tungsten-sort(钨丝),钨丝sort shuffle manager。官网上一般说,钨丝sort shuffle manager,效果跟sort shuffle manager是差不多的。

但是,唯一的不同之处在于,钨丝manager,是使用了自己实现的一套内存管理机制,性能上有很大的提升, 而且可以避免shuffle过程中产生的大量的OOM,GC,等等内存相关的异常。
hash、sort、tungsten-sort。如何来选择?
1、需不需要数据默认就让spark给你进行排序?就好像mapreduce,默认就是有按照key的排序。如果不需要的话,其实还是建议搭建就使用最基本的HashShuffleManager,因为最开始就是考虑的是不排序,换取高性能;

2、什么时候需要用sort shuffle manager?如果你需要你的那些数据按key排序了,那么就选择这种吧,而且要注意,reduce task的数量应该是超过200的,这样sort、merge(多个文件合并成一个)的机制,才能生效把。但是这里要注意,你一定要自己考量一下,有没有必要在shuffle的过程中,就做这个事情,毕竟对性能是有影响的。

3、如果你不需要排序,而且你希望你的每个task输出的文件最终是会合并成一份的,你自己认为可以减少性能开销;可以去调节bypassMergeThreshold这个阈值,比如你的reduce task数量是500,默认阈值是200,所以默认还是会进行sort和直接merge的;可以将阈值调节成550,不会进行sort,按照hash的做法,每个reduce task创建一份输出文件,最后合并成一份文件。(一定要提醒大家,这个参数,其实我们通常不会在生产环境里去使用,也没有经过验证说,这样的方式,到底有多少性能的提升)

4、如果你想选用sort based shuffle manager,而且你们公司的spark版本比较高,是1.5.x版本的,那么可以考虑去尝试使用tungsten-sort shuffle manager。看看性能的提升与稳定性怎么样。

总结:
1、在生产环境中,不建议大家贸然使用第三点和第四点:
2、如果你不想要你的数据在shuffle时排序,那么就自己设置一下,用hash shuffle manager。
3、如果你的确是需要你的数据在shuffle时进行排序的,那么就默认不用动,默认就是sort shuffle manager;或者是什么?如果你压根儿不care是否排序这个事儿,那么就默认让他就是sort的。调节一些其他的参数(consolidation机制)。(80%,都是用这种)

spark.shuffle.manager:hash、sort、tungsten-sort

new SparkConf().set(“spark.shuffle.manager”, “hash”)
new SparkConf().set(“spark.shuffle.manager”, “tungsten-sort”)

// 默认就是,new SparkConf().set(“spark.shuffle.manager”, “sort”)
new SparkConf().set(“spark.shuffle.sort.bypassMergeThreshold”, “550”)

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;