Bootstrap

吴恩达机器学习笔记1——定义、监督学习和无监督学习的定义

Machine Learning definition

  1. Arther Samuel(1959):Machine Learning:Field fo study that gives computers the ability to learn without being explicitly programmed.
  2. Tom Mitchell(1998) well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its improves with experience E.

 

 

监督学习:

利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练,该过程中有指导者。对于给出的数据集中的每个样本有相应的“正确答案”。

 

根据这些样本做出预测,分为两大类:回归和分类

 

根据吴恩达教授的机器学习课程:

  1. 回归问题:预测出一个连续值的输出。

例子:预测房价问题,根据样本的数据集进行拟合就可以得到一条连续的曲线。

  1. 分类问题:设法预测一个离散值的输出。

例子:根据肿瘤的某些特征来判断是良性还是恶性,得到的结果是“良性”或者是“恶性”,是离散的。

此时的1表示恶性,0表示良性。

根据区域不同的来判断是恶性还是良性。叉表示恶性,圈表示良性。

当然了,预测的特征也是有很多

无监督学习

无监督学习的数据集和监督学习的不同,没任何标签,也就是没有“正确的输出结果”。在此过程中没有指导者,只有计算机自己学习。从数据集中可以通过非监督学习得到数据的某种结构,可能是把数据分成两个不同的聚集簇,称为聚类算法。

聚类算法被应用于很多地方:

  1. Google新闻
  2. 基因学的应用:

 

  1. 大型计算机集群、社交网络分析、市场细分问题以及天文数据分析

  1. 鸡尾酒会问题

宴会中,场景会嘈杂问题等,声音的辨别、过滤以及提取人的声音就会显得很重要。但是需要分析和解析数据问题,所以就涉及无监督学习问题。

在使用语言的编程问题上,例如C++或者是Java中,处理音频的问题,需要写很多的代码,还需要连接那些复杂的C++或者Java库,但是在机器学习问题中,我们只需要一行代码即可实现:

SVD()函数——奇异值分解的缩写,作为线性代数常规函数的缩写。

 

参考资源:吴恩达 机器学习课程

;