itk 点集配准
fixed= transform(moving)
void PointRegistration(
const std::vector<itk::Point<double>>& fixed,
const std::vector<itk::Point<double>>& moving, double* err)
{vnl_matrix<double> fixed_matrix(fixed.size(), 3);
vnl_matrix<double> moving_matrix(moving.size(), 3);
vnl_matrix<double>* matrix_list[2] = { &fixed_matrix, &moving_matrix };
const std::vector<itk::Point<double>>* source_list[2] = { &fixed, &moving };
itk::Vector<double> mean_vec[2];
for (auto i = 0; i < 2; i++) {
auto& matrix = *matrix_list[i];
auto& points = *source_list[i];
auto& mean = mean_vec[i];
mean.Fill(0);
for (int r = 0; r < points.size(); r++) {
mean += itk::Vector<double>(points[r].GetDataPointer());
}
mean /= points.size();
for (unsigned int r = 0; r < matrix.rows(); r++) {
auto& p = points[r];
matrix(r, 0) = p[0] - mean[0];
matrix(r, 1) = p[1] - mean[1];
matrix(r, 2) =p[2] - mean[2];
}
}
auto target = moving_matrix.transpose() * fixed_matrix;
vnl_svd<double> svd(target);
auto rotation = svd.V() * (svd.U().transpose());
if (vnl_determinant(rotation) < 0) {
auto v = svd.V();
v.set_column(2, v.get_column(2) * (-1));
rotation = v * svd.U().transpose();
}
itk::Matrix<double> R(rotation);
auto T = R * (-mean_vec[1]) + mean_vec[0];
}
最后得到的R T 就是配准后的结果;