文章目录
1. MS COCO数据集简介
-
简介
MS COCO是一个非常大型且常用的数据集,其中包括了目标检测,分割,图像描述等。其主要特性如下:Object segmentation
: 目标级分割Recognition in context
: 图像情景识别Superpixel stuff segmentation
: 超像素分割330K images (>200K labeled)
: 超过33万张图像,标注过的图像超过20万张1.5 million object instances
: 150万个对象实例80 object categories
: 80个目标类别91 stuff categories
: 91个材料类别5 captions per image
: 每张图像有5段情景描述250,000 people with keypoints
: 对25万个人进行了关键点标注
-
注意事项
- 这里需要注意的一个点是“什么是stuff类别”,在官方的介绍论文中是这么定义的:
where “stuff” categories include materials and objects with no clear boundaries (sky, street, grass)
简单的理解就是stuff中包含没有明确边界的材料和对象。 - object的80类与stuff中的91类的区别在哪?在官方的介绍论文中有如下说明:
Note that we have limited the 2014 release to a subset of 80 categories. We did not collect segmentations for the following 11 categories: hat, shoe, eyeglasses (too many instances), mirror, window, door, street sign (ambiguous and difficult to label), plate, desk (due to confusion with bowl and dining table, respectively) and blender, hair brush (too few instances).
简单的理解就是object80类是stuff91类的子集。对于我们自己使用,如果仅仅是做目标检测,基本只用object80类即可。
- 这里需要注意的一个点是“什么是stuff类别”,在官方的介绍论文中是这么定义的:
-
简单与PASCAL VOC数据集对比
下图是官方介绍论文中统计的对比图,通过对比很明显,不仅类别更多,每个类别标注的目标也更多。
如果想进一步了解该数据集,可以去阅读下官方的介绍论文:
Microsoft COCO: Common Objects in Context https://arxiv.org/pdf/1405.0312.pdf
2. MS COCO数据集下载
这里以下载coco2017数据集为例,主要下载三个文件:
2017 Train images [118K/18GB]
:训练过程中使用到的所有图像文件2017 Val images [5K/1GB]
:验证过程中使用到的所有图像文件2017 Train/Val annotations [241MB]
:对应训练集和验证集的标注json文件
下载后都解压到coco2017
目录下,可以得到如下目录结构:
├── coco2017: 数据集根目录
├── train2017: 所有训练图像文件夹(118287张)
├── val2017: 所有验证图像文件夹(5000张)
└── annotations: 对应标注文件夹
├── instances_train2017.json: 对应目标检测、分割任务的训练集标注文件
├── instances_val2017.json: 对应目标检测、分割任务的验证集标注文件
├── captions_train2017.json: 对应图像描述的训练集标注文件
├── captions_val2017.json: 对应图像描述的验证集标注文件
├── person_keypoints_train2017.json: 对应人体关键点检测的训练集标注文件
└── person_keypoints_val2017.json: 对应人体关键点检测的验证集标注文件夹
3. MS COCO标注文件格式
官网有给出一个关于标注文件的格式说明,可以通过以下链接查看:
https://cocodataset.org/#format-data
3.1 使用Python的json库查看
对着官方给的说明,我们可以自己用Python的json库自己读取看下,下面以读取instances_val2017.json
为例:
import json
json_path = "/data/coco2017/annotations/instances_val2017.json"
json_labels = json.load(open(json_path, "r"))
print(json_labels["info"])
单步调试可以看到读入进来后是个字典的形式,包括了info
、licenses
、images
、annotations
以及categories
信息:
其中:
-
images
是一个列表(元素个数对应图像的张数),列表中每个元素都是一个dict
,对应一张图片的相关信息。包括对应图像名称、图像宽度、高度等信息。
-
annotations
是一个列表(元素个数对应数据集中所有标注的目标个数,注意不是图像的张数),列表中每个元素都是一个dict
对应一个目标的标注信息。包括目标的分割信息(polygons
多边形)、目标边界框信息[x,y,width,height](左上角x,y坐标,以及宽高)、目标面积、对应图像id以及类别id等。iscrowd
参数只有0或1两种情况,一般0代表单个对象,1代表对象集合。
-
categories
是一个列表(元素个数对应检测目标的类别数)列表中每个元素都是一个dict
对应一个类别的目标信息。包括类别id、类别名称和所属超类。
3.2 使用官方cocoAPI查看
官方有给出一个读取MS COCO数据集信息的API(当然,该API还有其他重要功能),下面是对应github的连接,里面有关于该API的使用demo:
https://github.com/cocodataset/cocoapi
- Linux系统安装pycocotools:
pip install pycocotools
- Windows系统安装pycocotools:
pip install pycocotools-windows
读取每张图片的bbox信息
下面是使用pycocotools
读取图像以及对应bbox信息的简单示例:
import os
from pycocotools.coco import COCO
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt
json_path = "/data/coco2017/annotations/instances_val2017.json"
img_path = "/data/coco2017/val2017"
# load coco data
coco = COCO(annotation_file=json_path)
# get all image index info
ids = list(sorted(coco.imgs.keys()))
print("number of images: {}".format(len(ids)))
# get all coco class labels
coco_classes = dict([(v["id"], v["name"]) for k, v in coco.cats.items()])
# 遍历前三张图像
for img_id in ids[:3]:
# 获取对应图像id的所有annotations idx信息
ann_ids = coco.getAnnIds(imgIds=img_id)
# 根据annotations idx信息获取所有标注信息
targets = coco.loadAnns(ann_ids)
# get image file name
path = coco.loadImgs(img_id)[0]['file_name']
# read image
img = Image.open(os.path.join(img_path, path)).convert('RGB')
draw = ImageDraw.Draw(img)
# draw box to image
for target in targets:
x, y, w, h = target["bbox"]
x1, y1, x2, y2 = x, y, int(x + w), int(y + h)
draw.rectangle((x1, y1, x2, y2))
draw.text((x1, y1), coco_classes[target["category_id"]])
# show image
plt.imshow(img)
plt.show()
通过pycocotools
读取的图像以及对应的targets信息,配合matplotlib库绘制标注图像如下:
读取每张图像的segmentation信息
下面是使用pycocotools
读取图像segmentation信息的简单示例:
import os
import random
import numpy as np
from pycocotools.coco import COCO
from pycocotools import mask as coco_mask
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt
random.seed(0)
json_path = "/data/coco2017/annotations/instances_val2017.json"
img_path = "/data/coco2017/val2017"
# random pallette
pallette = [0, 0, 0] + [random.randint(0, 255) for _ in range(255*3)]
# load coco data
coco = COCO(annotation_file=json_path)
# get all image index info
ids = list(sorted(coco.imgs.keys()))
print("number of images: {}".format(len(ids)))
# get all coco class labels
coco_classes = dict([(v["id"], v["name"]) for k, v in coco.cats.items()])
# 遍历前三张图像
for img_id in ids[:3]:
# 获取对应图像id的所有annotations idx信息
ann_ids = coco.getAnnIds(imgIds=img_id)
# 根据annotations idx信息获取所有标注信息
targets = coco.loadAnns(ann_ids)
# get image file name
path = coco.loadImgs(img_id)[0]['file_name']
# read image
img = Image.open(os.path.join(img_path, path)).convert('RGB')
img_w, img_h = img.size
masks = []
cats = []
for target in targets:
cats.append(target["category_id"]) # get object class id
polygons = target["segmentation"] # get object polygons
rles = coco_mask.frPyObjects(polygons, img_h, img_w)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = mask.any(axis=2)
masks.append(mask)
cats = np.array(cats, dtype=np.int32)
if masks:
masks = np.stack(masks, axis=0)
else:
masks = np.zeros((0, height, width), dtype=np.uint8)
# merge all instance masks into a single segmentation map
# with its corresponding categories
target = (masks * cats[:, None, None]).max(axis=0)
# discard overlapping instances
target[masks.sum(0) > 1] = 255
target = Image.fromarray(target.astype(np.uint8))
target.putpalette(pallette)
plt.imshow(target)
plt.show()
通过pycocotools
读取的图像segmentation信息,配合matplotlib库绘制标注图像如下:
读取人体关键点信息
在MS COCO任务中,对每个人体都标注了17的关键点,这17个关键点的部位分别如下:
["nose","left_eye","right_eye","left_ear","right_ear","left_shoulder","right_shoulder","left_elbow","right_elbow","left_wrist","right_wrist","left_hip","right_hip","left_knee","right_knee","left_ankle","right_ankle"]
在COCO给出的标注文件中,针对每个人体的标注格式如下所示。其中每3个值为一个关键点的相关信息,因为有17个关键点所以总共有51个数值。按照3个一组进行划分,前2个值代表关键点的x,y坐标,第3个值代表该关键点的可见度,它只会取
{
0
,
1
,
2
}
\{0, 1, 2\}
{0,1,2}三个值。0
表示该点一般是在图像外无法标注,1
表示虽然该点不可见但大概能猜测出位置(比如人侧着站时虽然有一只耳朵被挡住了,但大概也能猜出位置),2
表示该点可见。如果第3个值为0
,那么对应的x,y也都等于0:
[427, 170, 1, 429, 169, 2, 0, 0, 0, 434, 168, 2, 0, 0, 0, 441, 177, 2, 446, 177, 2, 437, 200, 2, 430, 206, 2, 430, 220, 2, 420, 215, 2, 445, 226, 2, 452, 223, 2, 447, 260, 2, 454, 257, 2, 455, 290, 2, 459, 286, 2]
下面是使用pycocotools
读取图像keypoints信息的简单示例:
import numpy as np
from pycocotools.coco import COCO
json_path = "/data/coco2017/annotations/person_keypoints_val2017.json"
coco = COCO(json_path)
img_ids = list(sorted(coco.imgs.keys()))
# 遍历前5张图片中的人体关键点信息(注意,并不是每张图片里都有人体信息)
for img_id in img_ids[:5]:
idx = 0
img_info = coco.loadImgs(img_id)[0]
ann_ids = coco.getAnnIds(imgIds=img_id)
anns = coco.loadAnns(ann_ids)
for ann in anns:
xmin, ymin, w, h = ann['bbox']
# 打印人体bbox信息
print(f"[image id: {img_id}] person {idx} bbox: [{xmin:.2f}, {ymin:.2f}, {xmin + w:.2f}, {ymin + h:.2f}]")
keypoints_info = np.array(ann["keypoints"]).reshape([-1, 3])
visible = keypoints_info[:, 2]
keypoints = keypoints_info[:, :2]
# 打印关键点信息以及可见度信息
print(f"[image id: {img_id}] person {idx} keypoints: {keypoints.tolist()}")
print(f"[image id: {img_id}] person {idx} keypoints visible: {visible.tolist()}")
idx += 1
终端输出信息如下,通过以下信息可知,验证集中前5张图片里只有一张图片包含人体关键点信息:
[image id: 139] person 0 bbox: [412.80, 157.61, 465.85, 295.62]
[image id: 139] person 0 keypoints: [[427, 170], [429, 169], [0, 0], [434, 168], [0, 0], [441, 177], [446, 177], [437, 200], [430, 206], [430, 220], [420, 215], [445, 226], [452, 223], [447, 260], [454, 257], [455, 290], [459, 286]]
[image id: 139] person 0 keypoints visible: [1, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
[image id: 139] person 1 bbox: [384.43, 172.21, 399.55, 207.95]
[image id: 139] person 1 keypoints: [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]
[image id: 139] person 1 keypoints visible: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
4.验证目标检测任务mAP
首先要弄清楚cocoapi指定的数据格式(训练网络预测的结果),在官网的Evaluate
下拉框中选择Results Format
,可以看到每种任务的指定数据格式要求。
这里主要讲讲针对目标检测的格式。根据官方文档给的预测结果格式可以看到,我们需要以列表的形式保存结果,列表中的每个元素对应一个检测目标(每个元素都是字典类型),每个目标记录了四个信息:
image_id
记录该目标所属图像的id(int
类型)category_id
记录预测该目标的类别索引,注意这里索引是对应stuff中91个类别的索引信息(int
类型)bbox
记录预测该目标的边界框信息,注意对应目标的[xmin, ymin, width, height] (list[float]
类型)score
记录预测该目标的概率(float
类型)
下图是训练Faster R-CNN后在coco2017验证集上预测的结果:
接着将预测结果保存成json文件,后面需要使用到:
import json
results = [] # 所有预测的结果都保存在该list中
# write predict results into json file
json_str = json.dumps(results, indent=4)
with open('predict_results.json', 'w') as json_file:
json_file.write(json_str)
数据准备:
- COCO2017验证集json文件
instances_val2017.json
链接: https://pan.baidu.com/s/1ArWe8Igt_q0iJG6FCcH8mg 密码: sa0j - 自己训练的Faster R-CNN(VGG16)在验证集上预测的结果
predict_results.json
(刚刚上面生成的)
链接: https://pan.baidu.com/s/1h5RksfkPFTvH82N2qN95TA 密码: 8alm
示例代码:
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
# accumulate predictions from all images
# 载入coco2017验证集标注文件
coco_true = COCO(annotation_file="/data/coco2017/annotations/instances_val2017.json")
# 载入网络在coco2017验证集上预测的结果
coco_pre = coco_true.loadRes('predict_results.json')
coco_evaluator = COCOeval(cocoGt=coco_true, cocoDt=coco_pre, iouType="bbox")
coco_evaluator.evaluate()
coco_evaluator.accumulate()
coco_evaluator.summarize()
输出结果:
loading annotations into memory...
Done (t=0.43s)
creating index...
index created!
Loading and preparing results...
DONE (t=0.65s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=21.15s).
Accumulating evaluation results...
DONE (t=2.88s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.233
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.415
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.233
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.104
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.262
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.323
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.216
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.319
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.327
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.145
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.361
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.463