百日筑基第十五天-java多线程编程浅学一下3-JUC各种锁的原理及使用案例
死锁
Java的线程锁是可重入的锁。
什么是可重入的锁?我们还是来看例子:
public class Counter {
private int count = 0;
public synchronized void add(int n) {
if (n < 0) {
dec(-n);
} else {
count += n;
}
}
public synchronized void dec(int n) {
count += n;
}
}
观察synchronized
修饰的add()
方法,一旦线程执行到add()
方法内部,说明它已经获取了当前实例的this
锁。如果传入的n < 0
,将在add()
方法内部调用dec()
方法。由于dec()
方法也需要获取this
锁,现在问题来了:
对同一个线程,能否在获取到锁以后继续获取同一个锁?
答案是肯定的。JVM允许同一个线程重复获取同一个锁,这种能被同一个线程反复获取的锁,就叫做可重入锁。
由于Java的线程锁是可重入锁,所以,获取锁的时候,不但要判断是否是第一次获取,还要记录这是第几次获取。每获取一次锁,记录+1,每退出synchronized
块,记录-1,减到0的时候,才会真正释放锁。
死锁
一个线程可以获取一个锁后,再继续获取另一个锁。例如:
public void add(int m) {
synchronized(lockA) { // 获得lockA的锁
this.value += m;
synchronized(lockB) { // 获得lockB的锁
this.another += m;
} // 释放lockB的锁
} // 释放lockA的锁
}
public void dec(int m) {
synchronized(lockB) { // 获得lockB的锁
this.another -= m;
synchronized(lockA) { // 获得lockA的锁
this.value -= m;
} // 释放lockA的锁
} // 释放lockB的锁
}
在获取多个锁的时候,不同线程获取多个不同对象的锁可能导致死锁。对于上述代码,线程1和线程2如果分别执行add()
和dec()
方法时:
- 线程1:进入
add()
,获得lockA
; - 线程2:进入
dec()
,获得lockB
。
随后:
- 线程1:准备获得
lockB
,失败,等待中; - 线程2:准备获得
lockA
,失败,等待中。
此时,两个线程各自持有不同的锁,然后各自试图获取对方手里的锁,造成了双方无限等待下去,这就是死锁。
死锁发生后,没有任何机制能解除死锁,只能强制结束JVM进程。
因此,在编写多线程应用时,要特别注意防止死锁。因为死锁一旦形成,就只能强制结束进程。
**那么我们应该如何避免死锁呢?**答案是:线程获取锁的顺序要一致。即严格按照先获取lockA
,再获取lockB
的顺序,改写dec()
方法如下:
public void dec(int m) {
synchronized(lockA) { // 获得lockA的锁
this.value -= m;
synchronized(lockB) { // 获得lockB的锁
this.another -= m;
} // 释放lockB的锁
} // 释放lockA的锁
}
使用wait和notify
在Java程序中,synchronized
解决了多线程竞争的问题。例如,对于一个任务管理器,多个线程同时往队列中添加任务,可以用synchronized
加锁:
class TaskQueue {
Queue<String> queue = new LinkedList<>();
public synchronized void addTask(String s) {
this.queue.add(s);
}
}
但是synchronized
并没有解决多线程协调的问题。
仍然以上面的TaskQueue
为例,我们再编写一个getTask()
方法取出队列的第一个任务:
class TaskQueue {
Queue<String> queue = new LinkedList<>();
public synchronized void addTask(String s) {
this.queue.add(s);
}
public synchronized String getTask() {
while (queue.isEmpty()) {
}
return queue.remove();
}
}
上述代码看上去没有问题:getTask()
内部先判断队列是否为空,如果为空,就循环等待,直到另一个线程往队列中放入了一个任务,while()
循环退出,就可以返回队列的元素了。
但实际上while()
循环永远不会退出。因为线程在执行while()
循环时,已经在getTask()
入口获取了this
锁,其他线程根本无法调用addTask()
,因为addTask()
执行条件也是获取this
锁。
因此,执行上述代码,线程会在getTask()
中因为死循环而100%占用CPU资源。
如果深入思考一下,我们想要的执行效果是:
- 线程1可以调用
addTask()
不断往队列中添加任务; - 线程2可以调用
getTask()
从队列中获取任务。如果队列为空,则getTask()
应该等待,直到队列中至少有一个任务时再返回。
因此,多线程协调运行的原则就是:当条件不满足时,线程进入等待状态;当条件满足时,线程被唤醒,继续执行任务。
对于上述TaskQueue
,我们先改造getTask()
方法,在条件不满足时,线程进入等待状态:
public synchronized String getTask() {
while (queue.isEmpty()) {
this.wait();
}
return queue.remove();
}
当一个线程执行到getTask()
方法内部的while
循环时,它必定已经获取到了this
锁,此时,线程执行while
条件判断,如果条件成立(队列为空),线程将执行this.wait()
,进入等待状态。
这里的关键是:wait()
方法必须在当前获取的锁对象上调用,这里获取的是this
锁,因此调用this.wait()
。
调用wait()
方法后,线程进入等待状态,wait()
方法不会返回,直到将来某个时刻,线程从等待状态被其他线程唤醒后,wait()
方法才会返回,然后,继续执行下一条语句。
有些仔细的童鞋会指出:即使线程在getTask()
内部等待,其他线程如果拿不到this
锁,照样无法执行addTask()
,肿么办?
这个问题的关键就在于wait()
方法的执行机制非常复杂。首先,它不是一个普通的Java方法,而是定义在Object
类的一个native
方法,也就是由JVM的C代码实现的。其次,必须在synchronized
块中才能调用wait()
方法,因为wait()
方法调用时,会释放线程获得的锁,wait()
方法返回后,线程又会重新试图获得锁。
因此,只能在锁对象上调用wait()
方法。因为在getTask()
中,我们获得了this
锁,因此,只能在this
对象上调用wait()
方法:
public synchronized String getTask() {
while (queue.isEmpty()) {
// 释放this锁:
this.wait();
// 重新获取this锁
}
return queue.remove();
}
当一个线程在this.wait()
等待时,它就会释放this
锁,从而使得其他线程能够在addTask()
方法获得this
锁。
现在我们面临第二个问题:如何让等待的线程被重新唤醒,然后从wait()
方法返回?答案是在相同的锁对象上调用notify()
方法。我们修改addTask()
如下:
public synchronized void addTask(String s) {
this.queue.add(s);
this.notify(); // 唤醒在this锁等待的线程
}
注意到在往队列中添加了任务后,线程立刻对this
锁对象调用notify()
方法,这个方法会唤醒一个正在this
锁等待的线程(就是在getTask()
中位于this.wait()
的线程),从而使得等待线程从this.wait()
方法返回。
我们来看一个完整的例子:
public class Main {
public static void main(String[] args) throws InterruptedException {
var q = new TaskQueue();
var ts = new ArrayList<Thread>();
for (int i=0; i<5; i++) {
var t = new Thread() {
public void run() {
// 执行task:
while (true) {
try {
String s = q.getTask();
System.out.println("execute task: " + s);
} catch (InterruptedException e) {
return;
}
}
}
};
t.start();
ts.add(t);
}
var add = new Thread(() -> {
for (int i=0; i<10; i++) {
// 放入task:
String s = "t-" + Math.random();
System.out.println("add task: " + s);
q.addTask(s);
try { Thread.sleep(100); } catch(InterruptedException e) {}
}
});
add.start();
add.join();
Thread.sleep(100);
for (var t : ts) {
t.interrupt();
}
}
}
class TaskQueue {
Queue<String> queue = new LinkedList<>();
public synchronized void addTask(String s) {
this.queue.add(s);
this.notifyAll();
}
public synchronized String getTask() throws InterruptedException {
while (queue.isEmpty()) {
this.wait();
}
return queue.remove();
}
}
这个例子中,我们重点关注addTask()
方法,内部调用了this.notifyAll()
而不是this.notify()
,使用notifyAll()
将唤醒所有当前正在this
锁等待的线程,而notify()
只会唤醒其中一个(具体哪个依赖操作系统,有一定的随机性)。这是因为可能有多个线程正在getTask()
方法内部的wait()
中等待,使用notifyAll()
将一次性全部唤醒。通常来说,notifyAll()
更安全。有些时候,如果我们的代码逻辑考虑不周,用notify()
会导致只唤醒了一个线程,而其他线程可能永远等待下去醒不过来了。
但是,注意到wait()
方法返回时需要重新获得this
锁。假设当前有3个线程被唤醒,唤醒后,首先要等待执行addTask()
的线程结束此方法后,才能释放this
锁,随后,这3个线程中只能有一个获取到this
锁,剩下两个将继续等待。
再注意到我们在while()
循环中调用wait()
,而不是if
语句:
public synchronized String getTask() throws InterruptedException {
if (queue.isEmpty()) {
this.wait();
}
return queue.remove();
}
这种写法实际上是错误的,因为线程被唤醒时,需要再次获取this
锁。多个线程被唤醒后,只有一个线程能获取this
锁,此刻,该线程执行queue.remove()
可以获取到队列的元素,然而,剩下的线程如果获取this
锁后执行queue.remove()
,此刻队列可能已经没有任何元素了,所以,要始终在while
循环中wait()
,并且每次被唤醒后拿到this
锁就必须再次判断:
while (queue.isEmpty()) {
this.wait();
}
所以,正确编写多线程代码是非常困难的,需要仔细考虑的条件非常多,任何一个地方考虑不周,都会导致多线程运行时不正常。
小结:
wait
和notify
用于多线程协调运行:
- 在
synchronized
内部可以调用wait()
使线程进入等待状态; - 必须在已获得的锁对象上调用
wait()
方法; - 在
synchronized
内部可以调用notify()
或notifyAll()
唤醒其他等待线程; - 必须在已获得的锁对象上调用
notify()
或notifyAll()
方法; - 已唤醒的线程还需要重新获得锁后才能继续执行。
使用ReentrantLock
从Java 5开始,引入了一个高级的处理并发的java.util.concurrent
包,它提供了大量更高级的并发功能,能大大简化多线程程序的编写。
我们知道Java语言直接提供了**synchronized
关键字用于加锁,但这种锁一是很重,二是获取时必须一直等待**,没有额外的尝试机制。
java.util.concurrent.locks
包提供的**ReentrantLock
用于替代synchronized
加锁**,我们来看一下传统的synchronized
代码:
public class Counter {
private int count;
public void add(int n) {
synchronized(this) {
count += n;
}
}
}
如果用ReentrantLock
替代,可以把代码改造为:
public class Counter {
private final Lock lock = new ReentrantLock();
private int count;
public void add(int n) {
lock.lock();
try {
count += n;
} finally {
lock.unlock();
}
}
}
因为synchronized
是Java语言层面提供的语法,所以我们不需要考虑异常,而ReentrantLock
是Java代码实现的锁,我们就必须先获取锁,然后在finally
中正确释放锁。
顾名思义,ReentrantLock
是可重入锁,它和synchronized
一样,一个线程可以多次获取同一个锁。
和synchronized
不同的是,ReentrantLock
可以尝试获取锁:
if (lock.tryLock(1, TimeUnit.SECONDS)) {
try {
...
} finally {
lock.unlock();
}
}
上述代码在尝试获取锁的时候,最多等待1秒。如果1秒后仍未获取到锁,tryLock()
返回false
,程序就可以做一些额外处理,而不是无限等待下去。
所以,使用ReentrantLock
比直接使用synchronized
更安全,线程在tryLock()
失败的时候不会导致死锁。
小结
ReentrantLock
可以替代synchronized
进行同步;
ReentrantLock
获取锁更安全;
必须先获取到锁,再进入try {...}
代码块,最后使用finally
保证释放锁;
可以使用tryLock()
尝试获取锁。
使用Condition
使用ReentrantLock
比直接使用synchronized
更安全,可以替代synchronized
进行线程同步。
但是,synchronized
可以配合wait
和notify
实现线程在条件不满足时等待,条件满足时唤醒,用ReentrantLock
我们怎么编写wait
和notify
的功能呢?
答案是使用Condition
对象来实现wait
和notify
的功能。
我们仍然以TaskQueue
为例,把前面用synchronized
实现的功能通过ReentrantLock
和Condition
来实现:
class TaskQueue {
private final Lock lock = new ReentrantLock();
private final Condition condition = lock.newCondition();
private Queue<String> queue = new LinkedList<>();
public void addTask(String s) {
lock.lock();
try {
queue.add(s);
condition.signalAll();
} finally {
lock.unlock();
}
}
public String getTask() {
lock.lock();
try {
while (queue.isEmpty()) {
condition.await();
}
return queue.remove();
} finally {
lock.unlock();
}
}
}
可见,使用Condition
时,引用的Condition
对象必须从Lock
实例的newCondition()
返回,这样才能获得一个绑定了Lock
实例的Condition
实例。
Condition
提供的await()
、signal()
、signalAll()
原理和synchronized
锁对象的wait()
、notify()
、notifyAll()
是一致的,并且其行为也是一样的:
await()
会释放当前锁,进入等待状态;signal()
会唤醒某个等待线程;signalAll()
会唤醒所有等待线程;- 唤醒线程从
await()
返回后需要重新获得锁。
此外,和tryLock()
类似,await()
可以在等待指定时间后,如果还没有被其他线程通过signal()
或signalAll()
唤醒,可以自己醒来:
if (condition.await(1, TimeUnit.SECOND)) {
// 被其他线程唤醒
} else {
// 指定时间内没有被其他线程唤醒
}
可见,使用Condition
配合Lock
,我们可以实现更灵活的线程同步。
小结
Condition
可以替代wait
和notify
;
Condition
对象必须从Lock
对象获取。
使用ReadWriteLock
前面讲到的ReentrantLock
保证了只有一个线程可以执行临界区代码:
public class Counter {
private final Lock lock = new ReentrantLock();
private int[] counts = new int[10];
public void inc(int index) {
lock.lock();
try {
counts[index] += 1;
} finally {
lock.unlock();
}
}
public int[] get() {
lock.lock();
try {
return Arrays.copyOf(counts, counts.length);
} finally {
lock.unlock();
}
}
}
但是有些时候,这种保护有点过头。因为我们发现,任何时刻,只允许一个线程修改,也就是调用inc()
方法是必须获取锁,但是,get()
方法只读取数据,不修改数据,它实际上允许多个线程同时调用。
实际上我们想要的是:允许多个线程同时读,但只要有一个线程在写,其他线程就必须等待:
读 | 写 | |
---|---|---|
读 | 允许 | 不允许 |
写 | 不允许 | 不允许 |
使用ReadWriteLock
可以解决这个问题,它保证:
- 只允许一个线程写入(其他线程既不能写入也不能读取);
- 没有写入时,多个线程允许同时读(提高性能)。
用ReadWriteLock
实现这个功能十分容易。我们需要创建一个ReadWriteLock
实例,然后分别获取读锁和写锁:
public class Counter {
private final ReadWriteLock rwlock = new ReentrantReadWriteLock();
private final Lock rlock = rwlock.readLock();
private final Lock wlock = rwlock.writeLock();
private int[] counts = new int[10];
public void inc(int index) {
wlock.lock(); // 加写锁
try {
counts[index] += 1;
} finally {
wlock.unlock(); // 释放写锁
}
}
public int[] get() {
rlock.lock(); // 加读锁
try {
return Arrays.copyOf(counts, counts.length);
} finally {
rlock.unlock(); // 释放读锁
}
}
}
把读写操作分别用读锁和写锁来加锁,在读取时,多个线程可以同时获得读锁,这样就大大提高了并发读的执行效率。
使用ReadWriteLock
时,适用条件是同一个数据,有大量线程读取,但仅有少数线程修改。
例如,一个论坛的帖子,回复可以看做写入操作,它是不频繁的,但是,浏览可以看做读取操作,是非常频繁的,这种情况就可以使用ReadWriteLock
。
小结
使用ReadWriteLock
可以提高读取效率:
ReadWriteLock
只允许一个线程写入;ReadWriteLock
允许多个线程在没有写入时同时读取;ReadWriteLock
适合读多写少的场景。
使用StampedLock
前面介绍的ReadWriteLock
可以解决多线程同时读,但只有一个线程能写的问题。
如果我们深入分析ReadWriteLock
,会发现它有个潜在的问题:如果有线程正在读,写线程需要等待读线程释放锁后才能获取写锁,即读的过程中不允许写,这是一种悲观的读锁。
要进一步提升并发执行效率,Java 8引入了新的读写锁:StampedLock
。
StampedLock
和ReadWriteLock
相比,改进之处在于:读的过程中也允许获取写锁后写入!这样一来,我们读的数据就可能不一致,所以,需要一点额外的代码来判断读的过程中是否有写入,这种读锁是一种乐观锁。
乐观锁的意思就是乐观地估计读的过程中大概率不会有写入,因此被称为乐观锁。反过来,悲观锁则是读的过程中拒绝有写入,也就是写入必须等待。显然乐观锁的并发效率更高,但一旦有小概率的写入导致读取的数据不一致,需要能检测出来,再读一遍就行。
我们来看例子:
public class Point {
private final StampedLock stampedLock = new StampedLock();
private double x;
private double y;
public void move(double deltaX, double deltaY) {
long stamp = stampedLock.writeLock(); // 获取写锁
try {
x += deltaX;
y += deltaY;
} finally {
stampedLock.unlockWrite(stamp); // 释放写锁
}
}
public double distanceFromOrigin() {
long stamp = stampedLock.tryOptimisticRead(); // 获得一个乐观读锁
// 注意下面两行代码不是原子操作
// 假设x,y = (100,200)
double currentX = x;
// 此处已读取到x=100,但x,y可能被写线程修改为(300,400)
double currentY = y;
// 此处已读取到y,如果没有写入,读取是正确的(100,200)
// 如果有写入,读取是错误的(100,400)
if (!stampedLock.validate(stamp)) { // 检查乐观读锁后是否有其他写锁发生
stamp = stampedLock.readLock(); // 获取一个悲观读锁
try {
currentX = x;
currentY = y;
} finally {
stampedLock.unlockRead(stamp); // 释放悲观读锁
}
}
return Math.sqrt(currentX * currentX + currentY * currentY);
}
}
和ReadWriteLock
相比,写入的加锁是完全一样的,不同的是读取。注意到首先我们通过tryOptimisticRead()
获取一个乐观读锁,并返回版本号。接着进行读取,读取完成后,我们通过validate()
去验证版本号,如果在读取过程中没有写入,版本号不变,验证成功,我们就可以放心地继续后续操作。如果在读取过程中有写入,版本号会发生变化,验证将失败。在失败的时候,我们再通过获取悲观读锁再次读取。由于写入的概率不高,程序在绝大部分情况下可以通过乐观读锁获取数据,极少数情况下使用悲观读锁获取数据。
可见,StampedLock
把读锁细分为乐观读和悲观读,能进一步提升并发效率。但这也是有代价的:一是代码更加复杂,二是StampedLock
是不可重入锁,不能在一个线程中反复获取同一个锁。
StampedLock
还提供了更复杂的将悲观读锁升级为写锁的功能,它主要使用在if-then-update的场景:即先读,如果读的数据满足条件,就返回,如果读的数据不满足条件,再尝试写。
小结
StampedLock
提供了乐观读锁,可取代ReadWriteLock
以进一步提升并发性能;
StampedLock
是不可重入锁。
使用Semaphore
前面我们讲了各种锁的实现,本质上锁的目的是保护一种受限资源,保证同一时刻只有一个线程能访问(ReentrantLock),或者只有一个线程能写入(ReadWriteLock)。
还有一种受限资源,它需要保证同一时刻最多有N个线程能访问,比如同一时刻最多创建100个数据库连接,最多允许10个用户下载等。
这种限制数量的锁,如果用Lock数组来实现,就太麻烦了。
这种情况就可以使用Semaphore
,例如,最多允许3个线程同时访问:
public class AccessLimitControl {
// 任意时刻仅允许最多3个线程获取许可:
final Semaphore semaphore = new Semaphore(3);
public String access() throws Exception {
// 如果超过了许可数量,其他线程将在此等待:
semaphore.acquire();
try {
// TODO:
return UUID.randomUUID().toString();
} finally {
semaphore.release();
}
}
}
使用Semaphore
先调用acquire()
获取,然后通过try ... finally
保证在finally
中释放。
调用acquire()
可能会进入等待,直到满足条件为止。也可以使用tryAcquire()
指定等待时间:
if (semaphore.tryAcquire(3, TimeUnit.SECONDS)) {
// 指定等待时间3秒内获取到许可:
try {
// TODO:
} finally {
semaphore.release();
}
}
Semaphore
本质上就是一个信号计数器,用于限制同一时间的最大访问数量。
小结
如果要对某一受限资源进行限流访问,可以使用Semaphore
,保证同一时间最多N个线程访问受限资源。
使用Concurrent集合
我们在前面已经通过ReentrantLock
和Condition
实现了一个BlockingQueue
:
public class TaskQueue {
private final Lock lock = new ReentrantLock();
private final Condition condition = lock.newCondition();
private Queue<String> queue = new LinkedList<>();
public void addTask(String s) {
lock.lock();
try {
queue.add(s);
condition.signalAll();
} finally {
lock.unlock();
}
}
public String getTask() {
lock.lock();
try {
while (queue.isEmpty()) {
condition.await();
}
return queue.remove();
} finally {
lock.unlock();
}
}
}
BlockingQueue
的意思就是说,当一个线程调用这个TaskQueue
的getTask()
方法时,该方法内部可能会让线程变成等待状态,直到队列条件满足不为空,线程被唤醒后,getTask()
方法才会返回。
因为BlockingQueue
非常有用,所以我们不必自己编写,可以直接使用Java标准库的java.util.concurrent
包提供的线程安全的集合:ArrayBlockingQueue
。
除了BlockingQueue
外,针对List
、Map
、Set
、Deque
等,java.util.concurrent
包也提供了对应的并发集合类。我们归纳一下:
interface | non-thread-safe | thread-safe |
---|---|---|
List | ArrayList | CopyOnWriteArrayList |
Map | HashMap | ConcurrentHashMap |
Set | HashSet / TreeSet | CopyOnWriteArraySet |
Queue | ArrayDeque / LinkedList | ArrayBlockingQueue / LinkedBlockingQueue |
Deque | ArrayDeque / LinkedList | LinkedBlockingDeque |
使用这些并发集合与使用非线程安全的集合类完全相同。我们以ConcurrentHashMap
为例:
Map<String, String> map = new ConcurrentHashMap<>();
// 在不同的线程读写:
map.put("A", "1");
map.put("B", "2");
map.get("A", "1");
因为所有的同步和加锁的逻辑都在集合内部实现,对外部调用者来说,只需要正常按接口引用,其他代码和原来的非线程安全代码完全一样。即当我们需要多线程访问时,把:
Map<String, String> map = new HashMap<>();
改为:
Map<String, String> map = new ConcurrentHashMap<>();
就可以了。
java.util.Collections
工具类还提供了一个旧的线程安全集合转换器,可以这么用:
Map unsafeMap = new HashMap();
Map threadSafeMap = Collections.synchronizedMap(unsafeMap);
但是它实际上是用一个包装类包装了非线程安全的Map
,然后对所有读写方法都用synchronized
加锁,这样获得的线程安全集合的性能比java.util.concurrent
集合要低很多,所以不推荐使用。
小结
使用java.util.concurrent
包提供的线程安全的并发集合可以大大简化多线程编程:
多线程同时读写并发集合是安全的;
尽量使用Java标准库提供的并发集合,避免自己编写同步代码。
使用Atomic
Java的java.util.concurrent
包除了提供底层锁、并发集合外,还提供了一组原子操作的封装类,它们位于java.util.concurrent.atomic
包。
我们以AtomicInteger
为例,它提供的主要操作有:
- 增加值并返回新值:
int addAndGet(int delta)
- 加1后返回新值:
int incrementAndGet()
- 获取当前值:
int get()
- 用CAS方式设置:
int compareAndSet(int expect, int update)
Atomic类是通过无锁(lock-free)的方式实现的线程安全(thread-safe)访问。它的主要原理是利用了CAS:Compare and Set。
如果我们自己通过CAS编写incrementAndGet()
,它大概长这样:
public int incrementAndGet(AtomicInteger var) {
int prev, next;
do {
prev = var.get();
next = prev + 1;
} while ( ! var.compareAndSet(prev, next));
return next;
}
CAS是指,在这个操作中,如果AtomicInteger
的当前值是prev
,那么就更新为next
,返回true
。如果AtomicInteger
的当前值不是prev
,就什么也不干,返回false
。通过CAS操作并配合do ... while
循环,即使其他线程修改了AtomicInteger
的值,最终的结果也是正确的。
我们利用AtomicLong
可以编写一个多线程安全的全局唯一ID生成器:
class IdGenerator {
AtomicLong var = new AtomicLong(0);
public long getNextId() {
return var.incrementAndGet();
}
}
通常情况下,我们并不需要直接用do ... while
循环调用compareAndSet
实现复杂的并发操作,而是用incrementAndGet()
这样的封装好的方法,因此,使用起来非常简单。
在高度竞争的情况下,还可以使用Java 8提供的LongAdder
和LongAccumulator
。
小结
使用java.util.concurrent.atomic
提供的原子操作可以简化多线程编程:
- 原子操作实现了无锁的线程安全;
- 适用于计数器,累加器等。