Bootstrap

python实现单链表快速排序升序linkedqueue_同时对多个数组进行排序

关于

同时对多个数组进行排序的搜索结果

回答

本人学习数据结构时看到的不错的总结,共享一下了

文件有一组记录组成,记录有若干数据项组成,唯一标识记录的数据项称关键字;

排序是将文件按关键字的递增(减)顺序排列;

排序文件中有相同的关键字时,若排序后相对次序保持不变的称稳定排序,否则称不稳定排序;

在排序过程中,文件放在内存中处理不涉及数据的内、外存交换的称内部排序,反之称外部排序;

排序算法的基本操作:1)比较关键字的大小;2)改变指向记录的指针或移动记录本身。

评价排序方法的标准:1)执行时间;2)所需辅助空间,辅助空间为O(1)称就地排序;另要注意算法的复杂程度。

若关键字类型没有比较运算符,可事先定义宏或函数表示比较运算。

8.2插入排序

8.2.1直接插入排序

实现过程:

void insertsort(seqlist R)

{

int i, j;

for(i=2;i<=n;i++)

if(R[i].key< R[i-1].key{

R[0]=R[i];j=i-1;

do{R[j+1]=R[j];j--;}

while(R[0].key

R[j+1]=R[0];

}

}

复制代码

算法中引入监视哨R[0]的作用是:1)保存

R[i]

复制代码

的副本;2)简化边界条件,防止循环下标越界。

关键字比较次数最大为(n+2)(n-1)/2;记录移动次数最大为(n+4)(n-1)/2;

算法的最好时间是O(n);最坏时间是O(n^2);平均时间是O(n^2);是一种就地的稳定的排序;

8.2.2希尔排序

实现过程:是将直接插入排序的间隔变为d。d的取值要注意:1)最后一次必为1;2)避免d值互为倍数;

关键字比较次数最大为n^1.25;记录移动次数最大为1.6n^1.25;

算法的平均时间是O(n^1.25);是一种就地的不稳定的排序;

8.3交换排序

8.3.1冒泡排序

实现过程:从下到上相邻两个比较,按小在上原则扫描一次,确定最小值,重复n-1次。

关键字比较次数最小为n-1、最大为n(n-1)/2;记录移动次数最小为0,最大为3n(n-1)/2;

算法的最好时间是O(n);最坏时间是O(n^2);平均时间是O(n^2);是一种就地的稳定的排序;

8.3.2快速排序

实现过程:将第一个值作为基准,设置i,j指针交替从两头与基准比较,有交换后,交换j,i。i=j时确定基准,并以其为界限将序列分为两段。重复以上步骤。

关键字比较次数最好为nlog2n+nC(1)、最坏为n(n-1)/2;

算法的最好时间是O(nlog2n);最坏时间是O(n^2);平均时间是O(nlog2n);辅助空间为O(log2n);是一种不稳定排序;

8.4选择排序

8.4.1直接选择排序

实现过程:选择序列中最小的插入第一位,在剩余的序列中重复上一步,共重复n-1次。

关键字比较次数为n(n-1)/2;记录移动次数最小为0,最大为3(n-1);

算法的最好时间是O(n^2);最坏时间是O(n^2);平均时间是O(n^2);是一种就地的不稳定的排序;

8.4.2堆排序

实现过程:把序列按层次填入完全二叉树,调整位置使双亲大于或小于孩子,建立初始大根或小根堆,调整树根与最后一个叶子的位置,排除该叶子重新调整位置。

算法的最好时间是O(nlog2n);最坏时间是O(nlog2n);平均时间是O(nlog2n);是一种就地的不稳定排序;

8.5归并排序

实现过程:将初始序列分为2个一组,最后单数轮空,对每一组排序后作为一个单元,对2个单元排序,直到结束。

算法的最好时间是O(nlog2n);最坏时间是O(nlog2n);平均时间是O(nlog2n);辅助空间为O(n);是一种稳定排序;

8.6分配排序

8.6.1箱排序

实现过程:按关键字的取值范围确定箱子的个数,将序列按关键字放入箱中,输出非空箱的关键字。

在桶内分配和收集,及对各桶进行插入排序的时间为O(n),算法的期望时间是O(n),最坏时间是O(n^2)。

8.6.2基数排序

实现过程:按基数设置箱子,对关键字从低位到高位依次进行箱排序。

算法的最好时间是O(d*n+d*rd);最坏时间是O(d*n+d*rd);平均时间是O(d*n+d*rd);辅助空间O(n+rd);是一种稳定排序;

8.7各种内部排序方法的比较和选择

按平均时间复杂度分为:

1) 平方阶排序:直接插入、直接选择、冒泡排序;

2) 线性对数阶:快速排序、堆排序、归并排序;

3) 指数阶:希尔排序;

4) 线性阶:箱排序、基数排序。

选择合适排序方法的因素:1)待排序的记录数;2)记录的大小;3)关键字的结构和初始状态;4)对稳定性的要求;5)语言工具的条件;6)存储结构;7)时间和辅助空间复杂度。

结论:

1) 若规模较小可采用直接插入或直接选择排序;

2) 若文件初始状态基本有序可采用直接插入、冒泡或随机快速排序;

3) 若规模较大可采用快速排序、堆排序或归并排序;

4) 任何借助于比较的排序,至少需要O(nlog2n)的时间,箱排序和基数排序只适用于有明显结构特征的关键字;

5) 有的语言没有提供指针及递归,使归并、快速、基数排序算法复杂;

6) 记录规模较大时为避免大量移动记录可用链表作为存储结构,如插入、归并、基数排序,但快速、堆排序在链表上难以实现,可提取关键字建立索引表,然后对索引表排序。

附二:

第八章排序

*************************************************************************************

记录中可用某一项来标识一个记录,则称为关键字项,该数据项的值称为关键字。

排序是使文件中的记录按关键字递增(或递减)次序排列起来。·基本操作:比较关键字大小;改变指向记录的指针或移动记录。

·存储结构:顺序结构、链表结构、索引结构。

经过排序后这些具有相同关键字的记录之间的相对次序保持不变,则称这种排序方法是稳定的,否则排序算法是不稳定的。

排序过程中不涉及数据的内、外存交换则称之为"内部排序"(内排序),反之,若存在数据的内外存交换,则称之为外排序。

内部排序方法可分五类:插入排序、选择排序、交换排序、归并排序和分配排序。

评价排序算法好坏的标准主要有两条:执行时间和所需的辅助空间,另外算法的复杂程序也是要考虑的一个因素。

*************************************************************************************

插入排序:·直接插入排序: ·逐个向前插入到合适位置。

·哨兵(监视哨)有两个作用: ·作为临变量存放

R[i]

复制代码

·是在查找循环中用来监视下标变量j是否越界。

·直接插入排序是就地的稳定排序。时间复杂度为O(n^2),比较次数为(n+2)(n-1)/2;移动次数为(n+4)(n-1)/2;

·希尔排序: ·等间隔的数据比较并按要求顺序排列,最后间隔为1。

·希尔排序是就地的不稳定排序。时间复杂度为O(n^1.25),比较次数为(n^1.25);移动次数为(1.6n^1.25);

交换排序:·冒泡排序:·自下向上确定最轻的一个。·自上向下确定最重的一个。·自下向上确定最轻的一个,后自上向下确定最重的一个。

·冒泡排序是就地的稳定排序。时间复杂度为O(n^2),比较次数为n(n-1)/2;移动次数为3n(n-1)/2;

·快速排序:·以第一个元素为参考基准,设定、动两个指针,发生交换后指针交换位置,直到指针重合。重复直到排序完成。

·快速排序是非就地的不稳定排序。时间复杂度为O(nlog2n),比较次数为n(n-1)/2;

选择排序:·直接选择排序: ·选择最小的放在比较区前。

·直接选择排序就地的不稳定排序。时间复杂度为O(n^2)。比较次数为n(n-1)/2;

·堆排序 ·建堆:按层次将数据填入完全二叉树,从int(n/2)处向前逐个调整位置。

·然后将树根与最后一个叶子交换值并断开与树的连接并重建堆,直到全断开。

·堆排序是就地不稳定的排序,时间复杂度为O(nlog2n),不适宜于记录数较少的文件。。

归并排序: ·先两个一组排序,形成(n+1)/2组,再将两组并一组,直到剩下一组为止。

·归并排序是非就地稳定排序,时间复杂度是O(nlog2n),

分配排序:·箱排序: ·按关键字的取值范围确定箱子数,按关键字投入箱子,链接所有非空箱。

·箱排序的平均时间复杂度是线性的O(n).

·基数排序:·从低位到高位依次对关键字进行箱排序。

·基数排序是非就稳定的排序,时间复杂度是O(d*n+d*rd)。

各种排序方法的比较和选择: ·.待排序的记录数目n;n较大的要用时间复杂度为O(nlog2n)的排序方法;

·记录的大小(规模);记录大最好用链表作为存储结构,而快速排序和堆排序在链表上难于实现;

·关键字的结构及其初始状态;

·对稳定性的要求;

·语言工具的条件;

·存储结构;

·时间和辅助空间复杂度。

排序(sort)或分类

所谓排序,就是要整理文件中的记录,使之按关键字递增(或递减)次序排列起来。其确切定义如下:

输入:n个记录R1,R2,…,Rn,其相应的关键字分别为K1,K2,…,Kn。

输出:Ril,Ri2,…,Rin,使得Ki1≤Ki2≤…≤Kin。(或Ki1≥Ki2≥…≥Kin)。

1.被排序对象--文件

被排序的对象--文件由一组记录组成。

记录则由若干个数据项(或域)组成。其中有一项可用来标识一个记录,称为关键字项。该数据项的值称为关键字(Key)。

注意:

在不易产生混淆时,将关键字项简称为关键字。

2.排序运算的依据--关键字

用来作排序运算依据的关键字,可以是数字类型,也可以是字符类型。

关键字的选取应根据问题的要求而定。

【例】在高考成绩统计中将每个考生作为一个记录。每条记录包含准考证号、姓名、各科的分数和总分数等项内容。若要惟一地标识一个考生的记录,则必须用"准考证号"作为关键字。若要按照考生的总分数排名次,则需用"总分数"作为关键字。

排序的稳定性

当待排序记录的关键字均不相同时,排序结果是惟一的,否则排序结果不唯一。

在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生变化,则称这种排序方法是不稳定的。

注意:

排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。

排序方法的分类

1.按是否涉及数据的内、外存交换分

在排序过程中,若整个文件都是放在内存中处理,排序时不涉及数据的内、外存交换,则称之为内部排序(简称内排序);反之,若排序过程中要进行数据的内、外存交换,则称之为外部排序。

注意:

① 内排序适用于记录个数不很多的小文件

② 外排序则适用于记录个数太多,不能一次将其全部记录放人内存的大文件。

2.按策略划分内部排序方法

可以分为五类:插入排序、选择排序、交换排序、归并排序和分配排序。

排序算法分析

1.排序算法的基本操作

大多数排序算法都有两个基本的操作:

(1) 比较两个关键字的大小;

(2) 改变指向记录的指针或移动记录本身。

注意:

第(2)种基本操作的实现依赖于待排序记录的存储方式。

2.待排文件的常用存储方式

(1) 以顺序表(或直接用向量)作为存储结构

排序过程:对记录本身进行物理重排(即通过关键字之间的比较判定,将记录移到合适的位置)

(2) 以链表作为存储结构

排序过程:无须移动记录,仅需修改指针。通常将这类排序称为链表(或链式)排序;

(3) 用顺序的方式存储待排序的记录,但同时建立一个辅助表(如包括关键字和指向记录位置的指针组成的索引表)

排序过程:只需对辅助表的表目进行物理重排(即只移动辅助表的表目,而不移动记录本身)。适用于难于在链表上实现,仍需避免排序过程中移动记录的排序方法。

3.排序算法性能评价

(1) 评价排序算法好坏的标准

评价排序算法好坏的标准主要有两条:

① 执行时间和所需的辅助空间

② 算法本身的复杂程度

(2) 排序算法的空间复杂度

若排序算法所需的辅助空间并不依赖于问题的规模n,即辅助空间是O(1),则称之为就地排序(In-PlaceSou)。

非就地排序一般要求的辅助空间为O(n)。

(3) 排序算法的时间开销

大多数排序算法的时间开销主要是关键字之间的比较和记录的移动。有的排序算法其执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。

马铭芳

2019-12-02 01:19:07

0 浏览量

回答数 0

问题

十大经典排序算法大梳理 7月6日 【今日算法】

以前也零零碎碎发过一些排序算法,但排版都不太好,这次重新整理一次,排序算法是数据结构的重要部分,面试必问,系统地学习很有必要!

时间、空间复杂度比较

排...

游客ih62co2qqq5ww

2020-07-07 02:04:48

1002 浏览量

回答数 1

回答

名称 HashMap LinkedHashMap TreeMap 共同点 线程不安全 线程不安全 线程不安全 不同点 数据无序 数据有序 数据有序还可以对数据进行排序 数据结构 数组+链表+红黑树(在JDK1.8中如果链表长度大于8的时候才转换为红黑树,平常不是) 双向链表+HashMap 红黑树

1.HashMap是一个最常用的Map,它根据键的hashCode值存储数据,根据键可以直接获取它的值,具有很快的访问速度。HashMap最多只允许一条记录的键为null,不允许多条记录的值为null。HashMap不支持线程的同步,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要同步,可以用Collections.synchronizedMap(HashMap map)方法使HashMap具有同步的能力。 2.LinkedHashMap保存了记录的插入顺序,在用Iteraor遍历LinkedHashMap时,先得到的记录肯定是先插入的。在遍历的时候会比HashMap慢。有HashMap的全部特性。 3.TreeMap能够把它保存的记录根据键排序,默认是按升序排序,也可以指定排序的比较器。当用Iteraor遍历TreeMap时,得到的记录是排过序的。TreeMap的键和值都不能为空。

景凌凯

2020-01-09 13:45:34

0 浏览量

回答数 0

问题

算法工程师必知必会10大基础算法! 6月23日 【今日算法】

算法一:快速排序算法

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个项目要Ο(nlogn)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。

事实上࿰...

游客ih62co2qqq5ww

2020-06-23 13:36:00

6 浏览量

回答数 1

问题

图解!24张图彻底弄懂九大常见数据结构! 7月22日 【今日算法】

数据结构想必大家都不会陌生,对于一个成熟的程序员而言,熟悉和掌握数据结构和算法也是基本功之一。数据结构本身其实不过是数据按照特点关系进行存储或者组织的集合,特殊的结构在不同的应用场景中往往会带来不一...

游客ih62co2qqq5ww

2020-07-27 13:19:32

6 浏览量

回答数 1

问题

图解九大数据结构 6月13日 【今日算法】

数据结构想必大家都不会陌生,对于一个成熟的程序员而言,熟悉和掌握数据结构和算法也是基本功之一。数据结构本身其实不过是数据按照特点关系进行存储或者组织的集合,特殊的结构在不同的应用场景中往往会带来不一...

游客ih62co2qqq5ww

2020-06-17 13:17:00

29 浏览量

回答数 1

问题

十大经典排序算法最强总结(内含代码实现)

1、算法分类

十种常见排序算法可以分为两大类:

比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。

非比较类排...

游客pklijor6gytpx

2020-01-09 14:44:55

1240 浏览量

回答数 2

问题

什么是表结构优化?

7.3 表结构优化

分区列选择

基本原理分析型数据库的表一级分区采用hash分区,可指定任意一列(不支持多列)作为分区列,然后采用以下标准CRC算法,计算出C...

nicenelly

2019-12-01 21:11:07

1421 浏览量

回答数 0

问题

什么是表结构优化?

7.3 表结构优化

分区列选择

基本原理分析型数据库的表一级分区采用hash分区,可指定任意一列(不支持多列)作为分区列,然后采用以下标准CRC算法,计算出C...

nicenelly

2019-12-01 21:25:39

1095 浏览量

回答数 0

回答

2.1基于词频统计——词位置加权的搜索引擎

利用关键词在文档中出现的频率和位置排序是搜索引擎最早期排序的主要思想,其技术发展也最为成熟,是第一阶段搜索引擎的主要排序技术,应用非常广泛,至今仍是许多搜索引擎的核心排序技术。其基本原理是:关键词在文档中词频越高,出现的位置越重要,则被认为和检索词的相关性越好。

1)词频统计

文档的词频是指查询关键词在文档中出现的频率。查询关键词词频在文档中出现的频率越高,其相关度越大。但当关键词为常用词时,使其对相关性判断的意义非常小。TF/IDF很好的解决了这个问题。TF/IDF算法被认为是信息检索中最重要的发明。TF(Term Frequency):单文本词汇频率,用关键词的次数除以网页的总字数,其商称为“关键词的频率”。IDF(Inverse Document Frequency):逆文本频率指数,其原理是,一个关键词在N个网页中出现过,那么N越大,此关键词的权重越小,反之亦然。当关键词为常用词时,其权重极小,从而解决词频统计的缺陷。

2)词位置加权

在搜索引擎中,主要针对网页进行词位置加权。所以,页面版式信息的分析至关重要。通过对检索关键词在Web页面中不同位置和版式,给予不同的权值,从而根据权值来确定所搜索结果与检索关键词相关程度。可以考虑的版式信息有:是否是标题,是否为关键词,是否是正文,字体大小,是否加粗等等。同时,锚文本的信息也是非常重要的,它一般能精确的描述所指向的页面的内容。

2.2基于链接分析排序的第二代搜索引擎

链接分析排序的思想起源于文献引文索引机制,即论文被引用的次数越多或被越权威的论文引用,其论文就越有价值。链接分析排序的思路与其相似,网页被别的网页引用的次数越多或被越权威的网页引用,其价值就越大。被别的网页引用的次数越多,说明该网页越受欢迎,被越权威的网页引用,说明该网页质量越高。链接分析排序算法大体可以分为以下几类:基于随机漫游模型的,比如PageRank和Repution算法;基于概率模型的,如SALSA、PHITS;基于Hub和Authority相互加强模型的,如HITS及其变种;基于贝叶斯模型的,如贝叶斯算法及其简化版本。所有的算法在实际应用中都结合传统的内容分析技术进行了优化。本文主要介绍以下几种经典排序算法:

1)PageRank算法

PageRank算法由斯坦福大学博士研究生Sergey Brin和Lwraence Page等提出的。PageRank算法是Google搜索引擎的核心排序算法,是Google成为全球最成功的搜索引擎的重要因素之一,同时开启了链接分析研究的热潮。

PageRank算法的基本思想是:页面的重要程度用PageRank值来衡量,PageRank值主要体现在两个方面:引用该页面的页面个数和引用该页面的页面重要程度。一个页面P(A)被另一个页面P(B)引用,可看成P(B)推荐P(A),P(B)将其重要程度(PageRank值)平均的分配P(B)所引用的所有页面,所以越多页面引用P(A),则越多的页面分配PageRank值给P(A),PageRank值也就越高,P(A)越重要。另外,P(B)越重要,它所引用的页面能分配到的PageRank值就越多,P(A)的PageRank值也就越高,也就越重要。

其计算公式为:

PR(A):页面A的PageRank值;

d:阻尼系数,由于某些页面没有入链接或者出链接,无法计算PageRank值,为避免这个问题(即LinkSink问题),而提出的。阻尼系数常指定为0.85。

R(Pi):页面Pi的PageRank值;

C(Pi):页面链出的链接数量;

PageRank值的计算初始值相同,为了不忽视被重要网页链接的网页也是重要的这一重要因素,需要反复迭代运算,据张映海撰文的计算结果,需要进行10次以上的迭代后链接评价值趋于稳定,如此经过多次迭代,系统的PR值达到收敛。

PageRank是一个与查询无关的静态算法,因此所有网页的PageRank值均可以通过离线计算获得。这样,减少了用户检索时需要的排序时间,极大地降低了查询响应时间。但是PageRank存在两个缺陷:首先PageRank算法严重歧视新加入的网页,因为新的网页的出链接和入链接通常都很少,PageRank值非常低。另外PageRank算法仅仅依靠外部链接数量和重要度来进行排名,而忽略了页面的主题相关性,以至于一些主题不相关的网页(如广告页面)获得较大的PageRank值,从而影响了搜索结果的准确性。为此,各种主题相关算法纷纷涌现,其中以以下几种算法最为典型。

2)Topic-Sensitive PageRank算法

由于最初PageRank算法中是没有考虑主题相关因素的,斯坦福大学计算机科学系Taher Haveli-wala提出了一种主题敏感(Topic-Sensitive)的PageRank算法解决了“主题漂流”问题。该算法考虑到有些页面在某些领域被认为是重要的,但并不表示它在其它领域也是重要的。

网页A链接网页B,可以看作网页A对网页B的评分,如果网页A与网页B属于相同主题,则可认为A对B的评分更可靠。因为A与B可形象的看作是同行,同行对同行的了解往往比不是同行的要多,所以同行的评分往往比不是同行的评分可靠。遗憾的是TSPR并没有利用主题的相关性来提高链接得分的准确性。

3)HillTop算法

HillTop是Google的一个工程师Bharat在2001年获得的专利。HillTop是一种查询相关性链接分析算法,克服了的PageRank的查询无关性的缺点。HillTop算法认为具有相同主题的相关文档链接对于搜索者会有更大的价值。在Hilltop中仅考虑那些用于引导人们浏览资源的专家页面(Export Sources)。Hilltop在收到一个查询请求时,首先根据查询的主题计算出一列相关性最强的专家页面,然后根据指向目标页面的非从属专家页面的数量和相关性来对目标页面进行排序。

HillTop算法确定网页与搜索关键词的匹配程度的基本排序过程取代了过分依靠PageRank的值去寻找那些权威页面的方法,避免了许多想通过增加许多无效链接来提高网页PageRank值的作弊方法。HillTop算法通过不同等级的评分确保了评价结果对关键词的相关性,通过不同位置的评分确保了主题(行业)的相关性,通过可区分短语数防止了关键词的堆砌。

但是,专家页面的搜索和确定对算法起关键作用,专家页面的质量对算法的准确性起着决定性作用,也就忽略了大多数非专家页面的影响。专家页面在互联网中占的比例非常低(1.79%),无法代表互联网全部网页,所以HillTop存在一定的局限性。同时,不同于PageRank算法,HillTop算法的运算是在线运行的,对系统的响应时间产生极大的压力。

4)HITS

HITS(Hyperlink Induced Topic Search)算法是Kleinberg在1998年提出的,是基于超链接分析排序算法中另一个最著名的算法之一。该算法按照超链接的方向,将网页分成两种类型的页面:Authority页面和Hub页面。Authority页面又称权威页面,是指与某个查询关键词和组合最相近的页面,Hub页面又称目录页,该页面的内容主要是大量指向Authority页面的链接,它的主要功能就是把这些Authority页面联合在一起。对于Authority页面P,当指向P的Hub页面越多,质量越高,P的Authority值就越大;而对于Hub页面H,当H指向的Authority的页面越多,Authority页面质量越高,H的Hub值就越大。对整个Web集合而言,Authority和Hub是相互依赖、相互促进,相互加强的关系。Authority和Hub之间相互优化的关系,即为HITS算法的基础。

HITS基本思想是:算法根据一个网页的入度(指向此网页的超链接)和出度(从此网页指向别的网页)来衡量网页的重要性。在限定范围之后根据网页的出度和入度建立一个矩阵,通过矩阵的迭代运算和定义收敛的阈值不断对两个向量Authority和Hub值进行更新直至收敛。

实验数据表明,HITS的排名准确性要比PageRank高,HITS算法的设计符合网络用户评价网络资源质量的普遍标准,因此能够为用户更好的利用网络信息检索工具访问互联网资源带来便利。

但却存在以下缺陷:首先,HITS算法只计算主特征向量,处理不好主题漂移问题;其次,进行窄主题查询时,可能产生主题泛化问题;第三,HITS算法可以说一种实验性质的尝试。它必须在网络信息检索系统进行面向内容的检索操作之后,基于内容检索的结果页面及其直接相连的页面之间的链接关系进行计算。尽管有人尝试通过算法改进和专门设立链接结构计算服务器(Connectivity Server)等操作,可以实现一定程度的在线实时计算,但其计算代价仍然是不可接受的。

2.3基于智能化排序的第三代搜索引擎

排序算法在搜索引擎中具有特别重要的地位,目前许多搜索引擎都在进一步研究新的排序方法,来提升用户的满意度。但目前第二代搜索引擎有着两个不足之处,在此背景下,基于智能化排序的第三代搜索引擎也就应运而生。

1)相关性问题

相关性是指检索词和页面的相关程度。由于语言复杂,仅仅通过链接分析及网页的表面特征来判断检索词与页面的相关性是片面的。例如:检索“稻瘟病”,有网页是介绍水稻病虫害信息的,但文中没有“稻瘟病”这个词,搜索引擎根本无法检索到。正是以上原因,造成大量的搜索引擎作弊现象无法解决。解决相关性的的方法应该是增加语意理解,分析检索关键词与网页的相关程度,相关性分析越精准,用户的搜索效果就会越好。同时,相关性低的网页可以剔除,有效地防止搜索引擎作弊现象。检索关键词和网页的相关性是在线运行的,会给系统相应时间很大的压力,可以采用分布式体系结构可以提高系统规模和性能。

2)搜索结果的单一化问题

在搜索引擎上,任何人搜索同一个词的结果都是一样。这并不能满足用户的需求。不同的用户对检索的结果要求是不一样的。例如:普通的农民检索“稻瘟病”,只是想得到稻瘟病的相关信息以及防治方法,但农业专家或科技工作者可能会想得到稻瘟病相关的论文。

解决搜索结果单一的方法是提供个性化服务,实现智能搜索。通过Web数据挖掘,建立用户模型(如用户背景、兴趣、行为、风格),提供个性化服务。

琴瑟

2019-12-02 01:17:25

0 浏览量

回答数 0

回答

遍历一个 List 有哪些不同的方式?每种方法的实现原理是什么?Java 中 List 遍历的最佳实践是什么?

遍历方式有以下几种:

for 循环遍历,基于计数器。在集合外部维护一个计数器,然后依次读取每一个位置的元素,当读取到最后一个元素后停止。 迭代器遍历,Iterator。Iterator 是面向对象的一个设计模式,目的是屏蔽不同数据集合的特点,统一遍历集合的接口。Java 在 Collections 中支持了 Iterator 模式。 foreach 循环遍历。foreach 内部也是采用了 Iterator 的方式实现,使用时不需要显式声明 Iterator 或计数器。优点是代码简洁,不易出错;缺点是只能做简单的遍历,不能在遍历过程中操作数据集合,例如删除、替换。

最佳实践:Java Collections 框架中提供了一个 RandomAccess 接口,用来标记 List 实现是否支持 Random Access。

如果一个数据集合实现了该接口,就意味着它支持 Random Access,按位置读取元素的平均时间复杂度为 O(1),如ArrayList。如果没有实现该接口,表示不支持 Random Access,如LinkedList。 推荐的做法就是,支持 Random Access 的列表可用 for 循环遍历,否则建议用 Iterator 或 foreach 遍历。

说一下 ArrayList 的优缺点

ArrayList的优点如下:

ArrayList 底层以数组实现,是一种随机访问模式。ArrayList 实现了 RandomAccess 接口,因此查找的时候非常快。ArrayList 在顺序添加一个元素的时候非常方便。

ArrayList 的缺点如下:

删除元素的时候,需要做一次元素复制操作。如果要复制的元素很多,那么就会比较耗费性能。插入元素的时候,也需要做一次元素复制操作,缺点同上。

ArrayList 比较适合顺序添加、随机访问的场景。

如何实现数组和 List 之间的转换?

数组转 List:使用 Arrays. asList(array) 进行转换。List 转数组:使用 List 自带的 toArray() 方法。

代码示例:

ArrayList 和 LinkedList 的区别是什么?

数据结构实现:ArrayList 是动态数组的数据结构实现,而 LinkedList 是双向链表的数据结构实现。随机访问效率:ArrayList 比 LinkedList 在随机访问的时候效率要高,因为 LinkedList 是线性的数据存储方式,所以需要移动指针从前往后依次查找。增加和删除效率:在非首尾的增加和删除操作,LinkedList 要比 ArrayList 效率要高,因为 ArrayList 增删操作要影响数组内的其他数据的下标。内存空间占用:LinkedList 比 ArrayList 更占内存,因为 LinkedList 的节点除了存储数据,还存储了两个引用,一个指向前一个元素,一个指向后一个元素。线程安全:ArrayList 和 LinkedList 都是不同步的,也就是不保证线程安全;

综合来说,在需要频繁读取集合中的元素时,更推荐使用 ArrayList,而在插入和删除操作较多时,更推荐使用 LinkedList。

补充:数据结构基础之双向链表

双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱。所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点。

ArrayList 和 Vector 的区别是什么?

这两个类都实现了 List 接口(List 接口继承了 Collection 接口),他们都是有序集合

线程安全:Vector 使用了 Synchronized 来实现线程同步,是线程安全的,而 ArrayList 是非线程安全的。性能:ArrayList 在性能方面要优于 Vector。扩容:ArrayList 和 Vector 都会根据实际的需要动态的调整容量,只不过在 Vector 扩容每次会增加 1 倍,而 ArrayList 只会增加 50%。 Vector类的所有方法都是同步的。可以由两个线程安全地访问一个Vector对象、但是一个线程访问Vector的话代码要在同步操作上耗费大量的时间。

Arraylist不是同步的,所以在不需要保证线程安全时时建议使用Arraylist。

插入数据时,ArrayList、LinkedList、Vector谁速度较快?阐述 ArrayList、Vector、LinkedList 的存储性能和特性?

ArrayList、LinkedList、Vector 底层的实现都是使用数组方式存储数据。数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢。

Vector 中的方法由于加了 synchronized 修饰,因此 Vector 是线程安全容器,但性能上较ArrayList差。

LinkedList 使用双向链表实现存储,按序号索引数据需要进行前向或后向遍历,但插入数据时只需要记录当前项的前后项即可,所以 LinkedList 插入速度较快。

多线程场景下如何使用 ArrayList?

ArrayList 不是线程安全的,如果遇到多线程场景,可以通过 Collections 的 synchronizedList 方法将其转换成线程安全的容器后再使用。例如像下面这样:

为什么 ArrayList 的 elementData 加上 transient 修饰?

ArrayList 中的数组定义如下:

private transient Object[] elementData;

再看一下 ArrayList 的定义:

public class ArrayList

extends AbstractList

implements List, RandomAccess, Cloneable, java.io.Serializable

可以看到 ArrayList 实现了 Serializable 接口,这意味着 ArrayList 支持序列化。transient 的作用是说不希望 elementData 数组被序列化,重写了 writeObject 实现:

每次序列化时,先调用 defaultWriteObject() 方法序列化 ArrayList 中的非 transient 元素,然后遍历 elementData,只序列化已存入的元素,这样既加快了序列化的速度,又减小了序列化之后的文件大小。

List 和 Set 的区别 List , Set 都是继承自Collection 接口

List 特点:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和 Vector。

Set 特点:一个无序(存入和取出顺序有可能不一致)容器,不可以存储重复元素,只允许存入一个null元素,必须保证元素唯一性。Set 接口常用实现类是 HashSet、LinkedHashSet 以及 TreeSet。

另外 List 支持for循环,也就是通过下标来遍历,也可以用迭代器,但是set只能用迭代,因为他无序,无法用下标来取得想要的值。

Set和List对比

Set:检索元素效率低下,删除和插入效率高,插入和删除不会引起元素位置改变。 List:和数组类似,List可以动态增长,查找元素效率高,插入删除元素效率低,因为会引起其他元素位置改变

Set接口

说一下 HashSet 的实现原理?

HashSet 是基于 HashMap 实现的,HashSet的值存放于HashMap的key上,HashMap的value统一为PRESENT,因此 HashSet 的实现比较简单,相关 HashSet 的操作,基本上都是直接调用底层 HashMap 的相关方法来完成,HashSet 不允许重复的值。

HashSet如何检查重复?HashSet是如何保证数据不可重复的?

向HashSet 中add ()元素时,判断元素是否存在的依据,不仅要比较hash值,同时还要结合equles 方法比较。 HashSet 中的add ()方法会使用HashMap 的put()方法。

HashMap 的 key 是唯一的,由源码可以看出 HashSet 添加进去的值就是作为HashMap 的key,并且在HashMap中如果K/V相同时,会用新的V覆盖掉旧的V,然后返回旧的V。所以不会重复( HashMap 比较key是否相等是先比较hashcode 再比较equals )。

以下是HashSet 部分源码:

hashCode()与equals()的相关规定:

如果两个对象相等,则hashcode一定也是相同的 两个对象相等,对两个e

;