Bootstrap

背包问题总结

01背包问题

特点:每件物品最多只能被选一次,即每件物品只有两种情况,选一次和不选,这也是该问题的名称由来。

例题

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 v_i,价值是 w_i。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 v_i, w_i,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0 < N, V <= 1000
0 < v_i, w_i <= 1000

输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

代码

#include<bits/stdc++.h>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i ++)
        for(int j = 0; j <= m; j ++)
        {
            f[i][j] = f[i - 1][j];
            if(j >= v[i])
                f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
        
    cout << f[n][m] << endl;
    
    return 0;
}

代码优化

#include<bits/stdc++.h>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];

int main()
{
    cin >> n >> m;

    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];

    for (int i = 1; i <= n; i ++ )
        for (int j = m; j >= v[i]; j -- )
            f[j] = max(f[j], f[j - v[i]] + w[i]);

    cout << f[m] << endl;

    return 0;
}

完全背包问题

特点:每件物品可以被选无数次。

例题

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10

代码(最直白的算法,但时间复杂度高,不建议使用)

#include<bits/stdc++.h>
using namespace std;

const int N = 1010;

int n, m;
int f[N][N];
int v[N], w[N];

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i ++)
        for(int j = 0; j <= m; j ++)
            for(int k = 0; k * v[i] <= j; k ++)
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
                
    cout << f[n][m] << endl;
    
    return 0;
}

代码优化

#include<bits/stdc++.h>
using namespace std;

const int N = 1010;

int n, m;
int f[N][N];
int v[N], w[N];

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i];
    
    for(int i = 1; i <= n; i ++)
        for(int j = 0; j <= m; j ++)
        {
            f[i][j] = f[i - 1][j];
            if(j >= v[i]) f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
        }
                
    cout << f[n][m] << endl;
    
    return 0;
}

代码再优化

#include<bits/stdc++.h>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];

    for (int i = 1; i <= n; i ++ )
        for (int j = v[i]; j <= m; j ++ )
            f[j] = max(f[j], f[j - v[i]] + w[i]);

    cout << f[m] << endl;

    return 0;
}

多重背包

特点:每件物品的数量有一定限制

例题

有 N 种物品和一个容量是 V 的背包。

第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤100
0<vi,wi,si≤100

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10

代码

#include<bits/stdc++.h>
using namespace std;

const int N = 110;

int n, m;
int v[N], w[N], s[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++) cin >> v[i] >> w[i] >> s[i];
    
    for(int i = 1; i <= n; i ++)
        for(int j = 0; j <= m; j ++)
            for(int k = 0; k <= s[i] && k * v[i] <= j; k ++)
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
    
    cout << f[n][m] << endl;
    
    return 0;
}

代码优化

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 12010, M = 2010;

int n, m;
int v[N], w[N];
int f[M];

int main()
{
    cin >> n >> m;

    int cnt = 0;
    for (int i = 1; i <= n; i ++ )
    {
        int a, b, s;
        cin >> a >> b >> s;
        int k = 1;
        while (k <= s)
        {
            cnt ++ ;
            v[cnt] = a * k;
            w[cnt] = b * k;
            s -= k;
            k *= 2;
        }
        if (s > 0)
        {
            cnt ++ ;
            v[cnt] = a * s;
            w[cnt] = b * s;
        }
    }

    n = cnt;

    for (int i = 1; i <= n; i ++ )
        for (int j = m; j >= v[i]; j -- )
            f[j] = max(f[j], f[j - v[i]] + w[i]);

    cout << f[m] << endl;

    return 0;
}

分组背包

特点:物品被分为若干组,每组只能选一个物品

例题

有 N 组物品和一个容量是 V 的背包。

每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。

接下来有 N 组数据:

每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤100
0<Si≤100
0<vij,wij≤100

输入样例

3 5
2
1 2
2 4
1
3 4
1
4 5

输出样例:

8

代码

#include<bits/stdc++.h>
using namespace std;

const int N = 110;

int n, m;
int v[N][N], w[N][N], s[N];
int f[N][N];

int main()
{
    cin >> n >> m;

    for (int i = 1; i <= n; i ++ )
    {
        cin >> s[i];
        for (int j = 0; j < s[i]; j ++ )
            cin >> v[i][j] >> w[i][j];
    }

    for (int i = 1; i <= n; i ++ )
        for (int j = 0; j <= m; j ++ )
        {
            f[i][j] = f[i - 1][j];
            for (int k = 0; k < s[i]; k ++ )
            {
                if(v[i][k] <= j)
                    f[i][j] = max(f[i][j], f[i - 1][j - v[i][k]] + w[i][k]);
            }
            
        }

    cout << f[n][m] << endl;

    return 0;
}

代码优化

#include<bits/stdc++.h>
using namespace std;

const int N = 110;

int n, m;
int v[N][N], w[N][N], s[N];
int f[N];

int main()
{
    cin >> n >> m;

    for (int i = 1; i <= n; i ++ )
    {
        cin >> s[i];
        for (int j = 0; j < s[i]; j ++ )
            cin >> v[i][j] >> w[i][j];
    }

    for (int i = 1; i <= n; i ++ )
        for (int j = m; j >= 0; j -- )
            for (int k = 0; k < s[i]; k ++ )
                if (v[i][k] <= j)
                    f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);

    cout << f[m] << endl;

    return 0;
}
;