本次主要是抓取开盘啦股票概念数据
采用多进程、requests完成数据的爬取
采用Pandas库完成数据比对,实现mysql数据存储
具体代码如下:
复制代码
-- coding: utf-8 --
import pandas as pd
import tushare as ts
import time
import requests
import json
from sqlalchemy import create_engine
from multiprocessing import Pool
from requests.packages.urllib3.exceptions import InsecureRequestWarning
Tushare股票code获取================================================================================================
def getCode():
print("-------------------------------------------")
print(“开始从Tushare接口获取股票行情列表数据”)
# 初始化tushare.pro接口
pro = ts.pro_api('ac16b470869c5d82db5033ae9288f77b282d2b5519507d6d2c72fdd7')
# L 表示正常上市,P 表示暂停上市
l_list = pro.stock_basic(list_status='L', fields='ts_code,symbol,name,area,exchange,list_status,list_date')
p_list = pro.stock_basic(list_status='P', fields='ts_code,symbol,name,area,exchange,list_status,list_date')
# 合并正常上市、暂停上市数据
stock_list = pd.concat([l_list, p_list], axis=0, ignore_index=True)
# 创建空列表
code_list = []
for index, row in stock_list.iterrows():
symbol = row['symbol']
code_list.append(symbol)
return code_list
爬取PC端开盘啦板块数据================================================================================================
def Kplspider(data_list):
print("-------------------------------------------")
# 构造空html列表
html_list = []
# 构造URL请求、user-agent头文件
url = 'https://pchq.kaipanla.com/w1/api/index.php'
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3314.0 Safari/537.36 SE 2.X MetaSr 1.0'}
session = requests.Session()
# 禁用安全请求警告
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
for data in data_list:
try:
html = session.post(url=url, data=data, headers=headers, verify=False).text
html_list.append(html)
except Exception as spider_error:
print("html抓取过程报错,错误信息为:%s" % spider_error)
# 分别创建用于存储tag、concept的空Dataframe
stock_tag = pd.DataFrame(); stock_concept = pd.DataFrame()
print("-------------------------------------------")
print("股票标签、所属概念数据开始解析")
for html in html_list:
# 解析开盘啦股票标签
code = json.loads(html)['trend']['code']
day = json.loads(html)['trend']['day']
tag = json.loads(html)["pankou"]["tag"]
stock_tag = stock_tag.append({'symbol': code, 'tag': tag, 'in_date':day}, ignore_index=True)
cept_list = json.loads(html)["stockplate"]
try:
for cept in cept_list:
stock_concept = stock_concept.append({'symbol':code, 'concept': cept[0], 'in_date': day}, ignore_index=True)
except Exception as parser_error:
print("html抓取过程报错,错误信息为:%s" % parser_error)
print("%s概念数据请求为空,请知悉" % code)
# 创建Pandas读写数据库引擎
engine = create_engine('mysql://root:[email protected]/quant?charset=utf8')
# 开始存储标签数据
old_tag = pd.read_sql('select * from is_belong_zyj', engine)
stock_tag = stock_tag[['symbol','tag','in_date']]
stock_tag = stock_tag.append(old_tag,ignore_index=True,sort=False)
stock_tag.drop_duplicates(subset=['symbol', 'tag'], keep=False,inplace=True)
stock_tag.to_sql('is_belong_zyj', engine, if_exists='append', index=False)
print(stock_tag)
print("本次存储开盘啦标签数据%s条" % stock_tag.shape[0])
# 开始存储所属概念数据
old_concept = pd.read_sql('select * from belong_concept',engine)
stock_concept = stock_tag[['symbol','concept','in_date']]
stock_concept = stock_tag.append(old_tag,ignore_index=True,sort=False)
stock_concept.drop_duplicates(subset=['symbol', 'concept'], keep=False,inplace=True)
stock_concept.to_sql('belong_concept', engine, if_exists='append', index=False)
print(stock_concept)
print("本次存储开盘啦标签数据%s条" % stock_concept.shape[0])
主函数================================================================================================================
if name == ‘main’:
print(“开盘啦股票标签及概念爬虫程序开始执行”)
print("-------------------------------------")
start = time.time()
# 调用getCode
code_list = getCode()
# 获取当前日期
cur_date = time.strftime("%Y%m%d", time.localtime())
# 创建多进程
pool = Pool(processes=4)
# 构造post请求表单
data_list = []
for code in code_list:
data = {'c': 'PCArrangeData','a': 'GetHQPlate','StockID': code,'Day': cur_date,'SelType': '1, 2, 3, 8, 9, 5, 6, 7','UserID': 399083,'Token': '71aef0e806e61ad3169ddc9473e37886'}
data_list.append(data)
# 开启多进程爬取开盘啦数据
try:
pool.map(Kplspider, (data_list,))
except Exception as error:
print("进程执行过程报错,错误信息为:%s" % error)
end = time.time()
print('开盘啦股票标签及概念爬虫程序共执行%0.2f秒.' % ((end - start)))
print("开盘啦股票标签及概念爬虫程序执行完成")