Bootstrap
主页
随机阅读
透视投影与正交投影矩阵
1.概述 计算机显示器是一个2D表面。由OpenGL渲染的3D场景必须被投影到计算机屏幕上作为2D图像。GL_PROJECTION矩阵用于这种投影变换。首先,它将所有顶点数据从eye坐标系(也可以称
functools — 处理函数的工具
翻译自:https://pymotw.com/3/functools/index.html functools模块提供了调整和扩展函数以及其他 callable objects的工具方法。 装饰器
高级语言(Java\Python\Php)的编译:链接及装载过程介绍3
引言 随着越来越多功能强大的高级语言的出现,在服务器计算能力不是瓶颈的条件下,很多同学会选择开发效率高,功能强大的虚拟机支持的高级语言(Java),或者脚本语言(Python,Php)作为实现功能的
cvEstimateRigidTransform函数详细注解
cvEstimateRigidTransform是opencv中求取仿射变换的函数,定义在lkpyramid.cpp文件中,该函数先利用ransac算法从所有特征点中选取一定数目的特征点,选取出的这些
线性代数之——子空间投影
1. 投影 向量 b =
列空间(column space)和零空间(null space)
上一篇中简单介绍了向量空间(vector space)和子空间(subspace),也知道了R3有4个子空间:R3本身,过原点的平面,过原点的直线以及单独的零向量。现假设过原点的面为P,过原点的直线为
InnoDB存储引擎对MVCC的实现
多版本并发控制 (Multi-Version Concurrency Control) MVCC 是一种并发控制机制,用于在多个并发事务同时读写数据库时保持数据的一致性和隔离性。它是通过在每个数据行
行列式及其性质
行列式(determinant)是方阵的一个重要特征,常记作detA或者|A|,其包含了矩阵的很多重要信息。行列式为0,则矩阵不可逆,否则矩阵可逆,所以行列式可用来检验矩阵的可逆性。这篇文章主要介绍行
MIT线性代数笔记-第15讲-子空间投影
目录 15.子空间投影打赏 15.子空间投影 用途:用于在 A
子空间与正交投影
最近需要用子空间、正交投影的概念,找了些资料,理解了相关概念,整理如下。 子空间和子空间的基 定义所有 n 维复向量的集合为
15子空间投影
本节通过一个向量向线和平面投影,引出了投影向量和误差向量概念。误差向量表示空间中两个向量的差异的手段,其模的大小是误差量化的手段,模越大,误差越大。一个子空间有一个仅与自身有关的投影矩阵
K8s 服务部署文件模板(K8s Service Deployment File Template)
K8s 服务部署文件模板 Kubernetes 是一个强大的容器编排平台,它提供了一套丰富的资源对象来帮助我们管理和部署应用程序。在 Kubernetes 中,服务的部署通常涉及多个资源对象,包括
对称矩阵及正定性
对称阵是非常重要的矩阵,对于实对称矩阵,其特征值也为实数,且特征向量是垂直的。注意这里的垂直是指:如果特征值互不相同,那么每个特征值对应的特征向量是在一条线上,那些线之间总是垂直的;如果特征值重复,那
正交矩阵和Gram-Schmidt正交化
今天我们学习一下正交向量(orthogonal vector)和正交矩阵(orthogonal matrix)。设有一组向量q1,q2…qn,如果任意的q都与其他的q正交,且每个q向量长度都为1,那么
A的LU分解
前面我们曾经通过高斯消元将矩阵A最终转化成了上三角阵U,那么今天我们就继续深入探索A和U之间到底有什么样的联系。在开始之前,先交代一些需用到的基础理论。假设A是可逆阵,则有AA-1=I,两边同时转置,
上一页
下一页
悦读
道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。
最新收录
毕业设计之wifi视频监控小车(五)
软件工程简答总结
小米路由器显示DNS服务器设置错误,小米路由器dns地址怎么设置
linux下gzip用法,Linux下tar和gzip命令的方法
什么是SDN?它解决了传统网络哪些问题?
vue-element使用JSZip与FileSaver批量下载文件(任何格式的文件)
java jdk8 使用stream实现两个list集合合并成一个list集合(对象属性的合并)
Windows server2019系统磁盘分区
企业内部订餐小程序(源码+lw+部署文档+讲解等)
打游戏时如何使计算机不弹出,windows10系统玩游戏时如何关闭输入法